Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of Runx2 in IGF-1Rβ/Akt- and AMPK/Erk-dependent growth, survival and sensitivity towards metformin in breast cancer bone metastasis

Abstract

The mechanisms underlying reprogramming of growth factor signaling and metabolic pathways during bone metastasis of breast cancer are not clear. The Runt-related transcription factor (Runx2) regulates cell signaling during mammary epithelial morphogenesis and promotes invasion; therefore, we investigated its role in cell growth and metabolic signaling in bone-seeking breast cancer cells. We performed systemic inoculation of control or Runx2 knockdown invasive MDA-MB-231 cells in NOD/SCID mice, and compared parental and bone-derived variants for phenotypic and molecular alterations. The Runx2 knockdown showed early (0–2 weeks) inhibition of metastatic spread but late (4–6 weeks) outgrowth, suggesting Runx2-dependent bi-phasic response and reprogramming of metastatic cells. The late-stage tumor outgrowth of bone-derived Runx2 knockdown cells was associated with increased insulin-like growth factor- 1Rβ (IGF-1Rβ) levels. Interestingly, glucose uptake and glycolysis were reduced in the bone-derived Runx2 knockdown cells that could be further reduced by extracellular-regulated protein kinase (Erk1/2) inhibition. Furthermore, the Runx2 knockdown cells displayed activation of AMP-activated protein kinase (AMPKα), the sensor of cellular metabolism. Importantly, the Runx2 knockdown in bone-derived cells resulted in increased sensitivity to both Erk1/2 inhibition and AMPKα activation by PD184161 and metformin, respectively, despite increased IGF-1Rβ and AMPKα levels. Our results reveal that Runx2 promotes metastatic spread of mammary tumor cells. The growth of late-stage tumor cells can be targeted by Runx2 knockdown in combination with Mek-Erk1/2 inhibition and metformin treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Coleman RE, Rubens RD . The clinical course of bone metastases from breast cancer. Br J Cancer 1987; 55: 61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ibrahim T, Mercatali L, Amadori D . A new emergency in oncology: bone metastases in breast cancer patients (Review). Oncol Lett 2013; 6: 306–310.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004; 64: 4506–4513.

    Article  CAS  PubMed  Google Scholar 

  4. Mundy GR . Mechanisms of osteolytic bone destruction. Bone 1991; 12 (Suppl 1): S1–S6.

    Article  PubMed  Google Scholar 

  5. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  6. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA . Molecular biology of bone metastasis. Mol Cancer Ther 2007; 6: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  7. Pande S, Browne G, Padmanabhan S, Zaidi SK, Lian JB, van Wijnen AJ et al. Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J Cell Physiol 2013; 228: 1784–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997; 89: 755–764.

    Article  CAS  PubMed  Google Scholar 

  9. Tandon M, Chen Z, Pratap J . Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res 2014; 16: R16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Inman CK, Li N, Shore P . Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol 2005; 25: 3182–3193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inman CK, Shore P . The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003; 278: 48684–48689.

    Article  CAS  PubMed  Google Scholar 

  12. Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003; 63: 2631–2637.

    CAS  PubMed  Google Scholar 

  13. Martin TJ, Gillespie MT . Receptor activator of nuclear factor kappa B ligand (RANKL): another link between breast and bone. Trends Endocrinol Metab 2001; 12: 2–4.

    Article  CAS  PubMed  Google Scholar 

  14. Pratap J, Imbalzano KM, Underwood JM, Cohet N, Gokul K, Akech J et al. Ectopic runx2 expression in mammary epithelial cells disrupts formation of normal acini structure: implications for breast cancer progression. Cancer Res 2009; 69: 6807–6814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDonald L, Ferrari N, Terry A, Bell M, Mohammed ZM, Orange C et al. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis Model Mech 2014; 7: 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Onodera Y, Miki Y, Suzuki T, Takagi K, Akahira J, Sakyu T et al. Runx2 in human breast carcinoma: its potential roles in cancer progression. Cancer Sci 2010; 101: 2670–2675.

    Article  CAS  PubMed  Google Scholar 

  17. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 2003; 63: 5357–5362.

    CAS  PubMed  Google Scholar 

  18. Lucero CM, Vega OA, Osorio MM, Tapia JC, Antonelli M, Stein GS et al. The cancer-related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines. J Cell Physiol 2013; 228: 714–723.

    Article  CAS  PubMed  Google Scholar 

  19. Chimge NO, Frenkel B . The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32: 2121–2130.

    Article  CAS  PubMed  Google Scholar 

  20. Roodman GD . Mechanisms of bone metastasis. N Engl J Med 2004; 350: 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  21. Hiraga T, Myoui A, Hashimoto N, Sasaki A, Hata K, Morita Y et al. Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Res 2012; 72: 4238–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riedemann J, Macaulay VM . IGF1R signalling and its inhibition. Endocr Relat Cancer 2006; 13 (Suppl 1): S33–S43.

    Article  CAS  PubMed  Google Scholar 

  23. Arteaga CL . Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res Treat 1992; 22: 101–106.

    Article  CAS  PubMed  Google Scholar 

  24. Dunn SE, Ehrlich M, Sharp NJ, Reiss K, Solomon G, Hawkins R et al. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 1998; 58: 3353–3361.

    CAS  PubMed  Google Scholar 

  25. Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D . The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene 2010; 29: 251–262.

    Article  CAS  PubMed  Google Scholar 

  26. Boroughs LK, DeBerardinis RJ . Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015; 17: 351–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tandon M, Chen Z, Pratap J . Role of Runx2 in crosstalk between Mek/Erk and PI3K/Akt signaling in MCF-10A cells. J Cell Biochem 2014; 115: 2208–2217.

    Article  CAS  PubMed  Google Scholar 

  28. Taipaleenmaki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL et al. Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res 2015; 75: 1433–1444.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS et al. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer 2012; 11: 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leong DT, Lim J, Goh X, Pratap J, Pereira BP, Kwok HS et al. Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Res 2010; 12: R89.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Monami G, Emiliozzi V, Morrione A . Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 2008; 216: 426–437.

    Article  CAS  PubMed  Google Scholar 

  32. Aksamitiene E, Kiyatkin A, Kholodenko BN . Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 2012; 40: 139–146.

    Article  CAS  PubMed  Google Scholar 

  33. Oh JS, Kucab JE, Bushel PR, Martin K, Bennett L, Collins J et al. Insulin-like growth factor-1 inscribes a gene expression profile for angiogenic factors and cancer progression in breast epithelial cells. Neoplasia 2002; 4: 204–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ . Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 2009; 17: 443–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005; 25: 8581–8591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berridge MV, Herst PM, Tan AS . Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005; 11: 127–152.

    Article  CAS  PubMed  Google Scholar 

  37. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ . Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 2005; 7: 324–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ . Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia 2008; 10: 745–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang J, Mills GB . AMPK: a contextual oncogene or tumor suppressor? Cancer Res 2013; 73: 2929–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009; 8: 2031–2040.

    Article  CAS  PubMed  Google Scholar 

  42. Zhuang Y, Miskimins WK . Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 2008; 3: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zordoky BN, Bark D, Soltys CL, Sung MM, Dyck JR . The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta 2014; 1840: 1943–1957.

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Chhipa RR, Nakano I, Dasgupta B . The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther 2014; 13: 596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henkels KM, Mallets ER, Dennis PB, Gomez-Cambronero J . S6K is a morphogenic protein with a mechanism involving Filamin-A phosphorylation and phosphatidic acid binding. FASEB J 2015; 29: 1299–1313.

    Article  CAS  PubMed  Google Scholar 

  46. Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP et al. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010; 21: 951–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suva LJ, Washam C, Nicholas RW, Griffin RJ . Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 2011; 7: 208–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guise T . Examining the metastatic niche: targeting the microenvironment. Semin Oncol 2010; 37 (Suppl 2): S2–S14.

    Article  CAS  PubMed  Google Scholar 

  49. Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 2012; 18: 1095–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taniguchi CM, Emanuelli B, Kahn CR . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96.

    Article  CAS  PubMed  Google Scholar 

  51. Yee D . Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst 2012; 104: 975–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G . Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol 1998; 18: 4197–4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Westendorf JJ . Transcriptional co-repressors of Runx2. J Cell Biochem 2006; 98: 54–64.

    Article  CAS  PubMed  Google Scholar 

  54. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D . Transcriptional regulation of osteoblasts. Cells Tissues Organs 2009; 189: 144–152.

    Article  CAS  PubMed  Google Scholar 

  55. Jonason JH, Xiao G, Zhang M, Xing L, Chen D . Post-translational regulation of Runx2 in bone and cartilage. J Dent Res 2009; 88: 693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oakley RH, Revollo J, Cidlowski JA . Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proc Natl Acad Sci USA 2012; 109: 17591–17596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB et al. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 2002; 22: 7982–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lian JB, Stein JL, Stein GS, van Wijnen AJ, Montecino M, Javed A et al. Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions. Connect Tissue Res 2003; 44 (Suppl 1): 141–148.

    Article  CAS  PubMed  Google Scholar 

  59. Boumah CE, Lee M, Selvamurugan N, Shimizu E, Partridge NC . Runx2 recruits p300 to mediate parathyroid hormone's effects on histone acetylation and transcriptional activation of the matrix metalloproteinase-13 gene. Mol Endocrinol 2009; 23: 1255–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ali SA, Dobson JR, Lian JB, Stein JL, van Wijnen AJ, Zaidi SK et al. A RUNX2-HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation. J Cell Sci 2012; 125 (Pt 11): 2732–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A . Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 2013; 4: e610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu H, Whitfield TW, Gordon JA, Dobson JR, Tai PW, van Wijnen AJ et al. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol 2014; 15: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ge C, Xiao G, Jiang D, Franceschi RT . Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 2007; 176: 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 2009; 284: 32533–32543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ge C, Zhao G, Li Y, Li H, Zhao X, Pannone G et al. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene 2015, ;e-pub ahead of print 13 April 2015; doi:10.1038/onc.2015.91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD et al. Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res 2008; 68: 7795–7802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M et al. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 2002; 21: 6082–6090.

    Article  CAS  PubMed  Google Scholar 

  68. Park HU, Suy S, Danner M, Dailey V, Zhang Y, Li H et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8: 733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhuang Y, Miskimins WK . Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 2011; 9: 603–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morales DR, Morris AD . Metformin in cancer treatment and prevention. Annu Rev Med 2015; 66: 17–29.

    Article  CAS  PubMed  Google Scholar 

  71. Dowling RJ, Goodwin PJ, Stambolic V . Understanding the benefit of metformin use in cancer treatment. BMC Med 2011; 9: 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hatoum D, McGowan EM . Recent advances in the use of metformin: can treating diabetes prevent breast cancer? Biomed Res Int 2015; 2015: 548436.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D . LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 2009; 28: 2621–2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 2011; 477: 349–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  76. Campbell JP, Merkel AR, Masood-Campbell SK, Elefteriou F, Sterling JA . Models of bone metastasis. J Vis Exp 2012, e-pub ahead of print 4 September 2014; doi:10.3791/4260.

  77. Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K et al. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res 2014; 29: 1597–1607.

    Article  CAS  PubMed  Google Scholar 

  78. Wingender E, Kel AE, Kel OV, Karas H, Heinemeyer T, Dietze P et al. TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation. Nucleic Acids Res 1997; 25: 265–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Drissi H, Pouliot A, Stein JL, van Wijnen AJ, Stein GS, Lian JB . Identification of novel protein/DNA interactions within the promoter of the bone-related transcription factor Runx2/Cbfa1. J Cell Biochem 2002; 86: 403–412.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rush University Medical Center investigators; Dr Rick Sumner and his lab members, Dr Ryan Ross and Maleeha Mashiatulla for assistance with μCT data acquisition and analysis; Dr Amarjit Virdi for help with the ex vivo bone tumor co-culture model. We thank Dr Carl Maki and members of his lab, Dr Lei Duan and Ricardo Perez for helpful discussions throughout this study; Dr Elena Dedkova and Dr Lothar Blatter for assistance with sea horse data acquisition and analysis. This study was supported by the grant from Bears Care Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Pratap.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, M., Chen, Z., Othman, A. et al. Role of Runx2 in IGF-1Rβ/Akt- and AMPK/Erk-dependent growth, survival and sensitivity towards metformin in breast cancer bone metastasis. Oncogene 35, 4730–4740 (2016). https://doi.org/10.1038/onc.2015.518

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.518

This article is cited by

Search

Quick links