Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer

Subjects

Abstract

Over the past decade the importance of lipids for cancer cell metabolism and cancer-related processes such as proliferation, metastasis and chemotherapy resistance has become more apparent. The mechanisms by which lipid signals are transduced are poorly understood, but frequently involve G-protein Coupled Receptors (GPCRs), which can be explored as druggable targets. Here, we discuss how GPCRs recognize four classes of cancer-relevant lipids (lysophospholipids, phospholipids, fatty acids and eicosanoids). We compare the ligand-binding properties of >50 lipid receptors, we examine how their dysregulation contributes to tumorigenesis and how they may be therapeutically exploited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. van Meer G, Voelker DR, Feigenson GW . Membrane lipids: where they are and how they behave. Nat Rev 2008; 9: 112–124.

    Article  CAS  Google Scholar 

  2. Czech MP, Tencerova M, Pedersen DJ, Aouadi M . Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56: 949–964.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Resh MD . Covalent lipid modifications of proteins. Curr Biol 2013; 23: R431–R435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Houben AJ, Moolenaar WH . Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 2011; 30: 557–565.

    Article  CAS  PubMed  Google Scholar 

  5. Pyne NJ, Pyne S . Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10: 489–503.

    Article  CAS  PubMed  Google Scholar 

  6. Wang D, Dubois RN . Eicosanoids and cancer. Nat Rev Cancer 2010; 10: 181–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pisanti S, Picardi P, D'Alessandro A, Laezza C, Bifulco M . The endocannabinoid signaling system in cancer. Trends Pharmacol Sci 2013; 34: 273–282.

    Article  CAS  PubMed  Google Scholar 

  8. Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011; 20: 370–383.

    Article  CAS  PubMed  Google Scholar 

  9. Houthuijzen JM, Daenen LG, Roodhart JM, Oosterom I, van Jaarsveld MT, Govaert KM et al. Lysophospholipids secreted by splenic macrophages induce chemotherapy resistance via interference with the DNA damage response. Nat Commun 2014; 5: 5275.

    Article  CAS  PubMed  Google Scholar 

  10. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  PubMed  Google Scholar 

  11. Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW . Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 2009; 30: 249–259.

    Article  CAS  PubMed  Google Scholar 

  12. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G et al. Crystal structure of a lipid G protein-coupled receptor. Science 2012; 335: 851–855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kuniyeda K, Okuno T, Terawaki K, Miyano M, Yokomizo T, Shimizu T . Identification of the intracellular region of the leukotriene B4 receptor type 1 that is specifically involved in Gi activation. J Biol Chem 2007; 282: 3998–4006.

    Article  CAS  PubMed  Google Scholar 

  14. D'Angelo DD, Eubank JJ, Davis MG, Dorn GW 2nd . Mutagenic analysis of platelet thromboxane receptor cysteines. Roles in ligand binding and receptor-effector coupling. J Biol Chem 1996; 271: 6233–6240.

    Article  CAS  PubMed  Google Scholar 

  15. So SP, Wu J, Huang G, Huang A, Li D, Ruan KH . Identification of residues important for ligand binding of thromboxane A2 receptor in the second extracellular loop using the NMR experiment-guided mutagenesis approach. J Biol Chem 2003; 278: 10922–10927.

    Article  CAS  PubMed  Google Scholar 

  16. Chiang N, Kan WM, Tai HH . Site-directed mutagenesis of cysteinyl and serine residues of human thromboxane A2 receptor in insect cells. Arch Biochem Biophys 1996; 334: 9–17.

    Article  CAS  PubMed  Google Scholar 

  17. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S . Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest 1994; 94: 1662–1667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Khasawneh FT, Huang JS, Turek JW, Le Breton GC . Differential mapping of the amino acids mediating agonist and antagonist coordination with the human thromboxane A2 receptor protein. J Biol Chem 2006; 281: 26951–26965.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou H, Yan F, Yamamoto S, Tai HH . Phenylalanine 138 in the second intracellular loop of human thromboxane receptor is critical for receptor-G-protein coupling. Biochem Biophys Res Commun 1999; 264: 171–175.

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborty R, Pydi SP, Gleim S, Bhullar RP, Hwa J, Dakshinamurti S et al. New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling. Mol Cell Biol 2013; 33: 184–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gaudreau R, Beaulieu ME, Chen Z, Le Gouill C, Lavigne P, Stankova J et al. Structural determinants regulating expression of the high affinity leukotriene B4 receptor: involvement of dileucine motifs and alpha-helix VIII. J Biol Chem 2004; 279: 10338–10345.

    Article  CAS  PubMed  Google Scholar 

  22. Okuno T, Yokomizo T, Hori T, Miyano M, Shimizu T . Leukotriene B4 receptor and the function of its helix 8. J Biol Chem 2005; 280: 32049–32052.

    Article  CAS  PubMed  Google Scholar 

  23. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM . Molecular signatures of G-protein-coupled receptors. Nature 2013; 494: 185–194.

    Article  CAS  PubMed  Google Scholar 

  24. Katritch V, Cherezov V, Stevens RC . Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2013; 53: 531–556.

    Article  CAS  PubMed  Google Scholar 

  25. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ . Interactions of the alpha-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 2013; 182: 209–218.

    Article  CAS  PubMed  Google Scholar 

  26. Kurose H . Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sci 2003; 74: 155–161.

    Article  CAS  PubMed  Google Scholar 

  27. Dowal L, Provitera P, Scarlata S . Stable association between G alpha(q) and phospholipase C beta 1 in living cells. J Biol Chem 2006; 281: 23999–24014.

    Article  CAS  PubMed  Google Scholar 

  28. Neves SR, Ram PT, Iyengar R . G protein pathways. Science 2002; 296: 1636–1639.

    Article  CAS  PubMed  Google Scholar 

  29. Lin FT, Lai YJ, Makarova N, Tigyi G, Lin WC . The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem 2007; 282: 37759–37769.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Lai YJ, Lin WC, Lin FT . TRIP6 enhances lysophosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid 2 receptor. J Biol Chem 2004; 279: 10459–10468.

    Article  CAS  PubMed  Google Scholar 

  31. Shuyu E, Lai YJ, Tsukahara R, Chen CS, Fujiwara Y, Yue J et al. Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect. J Biol Chem 2009; 284: 14558–14571.

    Article  CAS  Google Scholar 

  32. Brindley DN, Lin FT, Tigyi GJ . Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim Biophys Acta 2013; 1831: 74–85.

    Article  CAS  PubMed  Google Scholar 

  33. Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK et al. Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res 2004; 64: 4209–4217.

    Article  CAS  PubMed  Google Scholar 

  34. Mills GB, Moolenaar WH . The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003; 3: 582–591.

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15: 539–550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gotoh M, Fujiwara Y, Yue J, Liu J, Lee S, Fells J et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans 2012; 40: 31–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J et al. Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 2006; 66: 7983–7990.

    Article  CAS  PubMed  Google Scholar 

  38. Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L et al. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 2006; 66: 3006–3014.

    Article  CAS  PubMed  Google Scholar 

  39. Samadi N, Gaetano C, Goping IS, Brindley DN . Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene 2009; 28: 1028–1039.

    Article  CAS  PubMed  Google Scholar 

  40. Spiegel S, Milstien S . Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev 2003; 4: 397–407.

    Article  CAS  Google Scholar 

  41. Matula K, Collie-Duguid E, Murray G, Parikh K, Grabsch H, Tan P et al. Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 2015; 15: 762.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N . The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun 2007; 363: 861–866.

    Article  CAS  PubMed  Google Scholar 

  43. Murakami M, Shiraishi A, Tabata K, Fujita N . Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun 2008; 371: 707–712.

    Article  CAS  PubMed  Google Scholar 

  44. Oka S, Ota R, Shima M, Yamashita A, Sugiura T . GPR35 is a novel lysophosphatidic acid receptor. Biochem Biophys Res Commun 2010; 395: 232–237.

    Article  CAS  PubMed  Google Scholar 

  45. Uhlenbrock K, Gassenhuber H, Kostenis E . Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 2002; 14: 941–953.

    Article  CAS  PubMed  Google Scholar 

  46. Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E . Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal 2003; 15: 435–446.

    Article  CAS  PubMed  Google Scholar 

  47. Yin H, Chu A, Li W, Wang B, Shelton F, Otero F et al. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 2009; 284: 12328–12338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhang H, Wang D, Sun H, Hall RA, Yun CC . MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cell Signal 2007; 19: 261–268.

    Article  CAS  PubMed  Google Scholar 

  49. Lin S, Yeruva S, He P, Singh AK, Zhang H, Chen M et al. Lysophosphatidic acid stimulates the intestinal brush border Na(+)/H(+) exchanger 3 and fluid absorption via LPA(5) and NHERF2. Gastroenterology 2010; 138: 649–658.

    Article  CAS  PubMed  Google Scholar 

  50. Varsano T, Taupin V, Guo L, Baterina Jr OY, Farquhar MG . The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA. PLoS One 2012; 7: e49227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Yamada T, Ohoka Y, Kogo M, Inagaki S . Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J Biol Chem 2005; 280: 19358–19363.

    Article  CAS  PubMed  Google Scholar 

  52. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010; 50: 157–186.

    Article  CAS  PubMed  Google Scholar 

  53. Yanagida K, Kurikawa Y, Shimizu T, Ishii S . Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta 2013; 1831: 33–41.

    Article  CAS  PubMed  Google Scholar 

  54. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y et al. Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 2015; 161: 1633–1643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Inagaki Y, Pham TT, Fujiwara Y, Kohno T, Osborne DA, Igarashi Y et al. Sphingosine 1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. Biochem J 2005; 389: 187–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Pham TC, Fells Sr JI, Osborne DA, North EJ, Naor MM, Parrill AL . Molecular recognition in the sphingosine 1-phosphate receptor family. J Mol Graph Model 2008; 26: 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  57. Sardar VM, Bautista DL, Fischer DJ, Yokoyama K, Nusser N, Virag T et al. Molecular basis for lysophosphatidic acid receptor antagonist selectivity. Biochim Biophys Acta 2002; 1582: 309–317.

    Article  CAS  PubMed  Google Scholar 

  58. Fujiwara Y, Sardar V, Tokumura A, Baker D, Murakami-Murofushi K, Parrill A et al. Identification of residues responsible for ligand recognition and regioisomeric selectivity of lysophosphatidic acid receptors expressed in mammalian cells. J Biol Chem 2005; 280: 35038–35050.

    Article  CAS  PubMed  Google Scholar 

  59. Parrill AL, Wang D, Bautista DL, Van Brocklyn JR, Lorincz Z, Fischer DJ et al. Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. J Biol Chem 2000; 275: 39379–39384.

    Article  CAS  PubMed  Google Scholar 

  60. Wang DA, Lorincz Z, Bautista DL, Liliom K, Tigyi G, Parrill AL . A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J Biol Chem 2001; 276: 49213–49220.

    Article  CAS  PubMed  Google Scholar 

  61. Fujiwara Y, Osborne DA, Walker MD, Wang DA, Bautista DA, Liliom K et al. Identification of the hydrophobic ligand binding pocket of the S1P1 receptor. J Biol Chem 2007; 282: 2374–2385.

    Article  CAS  PubMed  Google Scholar 

  62. Noguchi K, Ishii S, Shimizu T . Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 2003; 278: 25600–25606.

    Article  CAS  PubMed  Google Scholar 

  63. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S et al. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 2006; 318: 619–628.

    Article  CAS  PubMed  Google Scholar 

  64. Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W et al. Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem 2009; 284: 17304–17319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K . Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett 2000; 478: 159–165.

    Article  CAS  PubMed  Google Scholar 

  66. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y et al. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 2009; 284: 17731–17741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Sugo T, Tachimoto H, Chikatsu T, Murakami Y, Kikukawa Y, Sato S et al. Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 2006; 341: 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  68. Iida Y, H Tsuno N, Kishikawa J, Kaneko K, Murono K, Kawai K et al. Lysophosphatidylserine stimulates chemotactic migration of colorectal cancer cells through GPR34 and PI3K/Akt pathway. Anticancer Res 2014; 34: 5465–5472.

    CAS  PubMed  Google Scholar 

  69. Kitamura H, Makide K, Shuto A, Ikubo M, Inoue A, Suzuki K et al. GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J Biochem 2012; 151: 511–518.

    Article  CAS  PubMed  Google Scholar 

  70. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A et al. TGFalpha shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods 2012; 9: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  71. Sugita K, Yamamura C, Tabata K, Fujita N . Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP. Biochem Biophys Res Commun 2013; 430: 190–195.

    Article  CAS  PubMed  Google Scholar 

  72. Frasch SC, Berry KZ, Fernandez-Boyanapalli R, Jin HS, Leslie C, Henson PM et al. NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem 2008; 283: 33736–33749.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Liebscher I, Muller U, Teupser D, Engemaier E, Engel KM, Ritscher L et al. Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J Biol Chem 2011; 286: 2101–2110.

    Article  CAS  PubMed  Google Scholar 

  74. Ikubo M, Inoue A, Nakamura S, Jung S, Sayama M, Otani Y et al. Structure-activity relationships of lysophosphatidylserine analogs as agonists of G-protein-coupled receptors GPR34, P2Y10, and GPR174. J Med Chem 2015; 58: 4204–4219.

    Article  CAS  PubMed  Google Scholar 

  75. Uwamizu A, Inoue A, Suzuki K, Okudaira M, Shuto A, Shinjo Y et al. Lysophosphatidylserine analogues differentially activate three LysoPS receptors. J Biochem 2015; 157: 151–160.

    Article  CAS  PubMed  Google Scholar 

  76. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 2007; 152: 1092–1101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T . Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 2007; 362: 928–934.

    Article  CAS  PubMed  Google Scholar 

  78. Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T . 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 2009; 145: 13–20.

    Article  CAS  PubMed  Google Scholar 

  79. Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ . The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 2009; 23: 183–193.

    Article  CAS  PubMed  Google Scholar 

  80. Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS et al. Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 2009; 284: 29817–29827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y et al. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2000; 2: 261–267.

    Article  CAS  PubMed  Google Scholar 

  82. Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, Kabarowski JH et al. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 2001; 276: 41325–41335.

    Article  CAS  PubMed  Google Scholar 

  83. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y . Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 2001; 293: 702–705.

    Article  CAS  PubMed  Google Scholar 

  84. Im DS, Heise CE, Nguyen T, O'Dowd BF, Lynch KR . Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 2001; 153: 429–434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 2005; 326: 744–751.

    Article  CAS  PubMed  Google Scholar 

  86. Gaetano CG, Samadi N, Tomsig JL, Macdonald TL, Lynch KR, Brindley DN . Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog 2009; 48: 801–809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Boucharaba A, Serre CM, Guglielmi J, Bordet JC, Clezardin P, Peyruchaud O . The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 2006; 103: 9643–9648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Glatt S, Halbauer D, Heindl S, Wernitznig A, Kozina D, Su KC et al. hGPR87 contributes to viability of human tumor cells. Int J Cancer 2008; 122: 2008–2016.

    Article  CAS  PubMed  Google Scholar 

  89. Gugger M, White R, Song S, Waser B, Cescato R, Riviere P et al. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis Markers 2008; 24: 41–50.

    Article  CAS  PubMed  Google Scholar 

  90. Okazoe H, Zhang X, Liu D, Shibuya S, Ueda N, Sugimoto M et al. Expression and Role of GPR87 in Urothelial Carcinoma of the Bladder. Int J Mol Sci 2013; 14: 12367–12379.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Yan M, Li H, Zhu M, Zhao F, Zhang L, Chen T et al. G protein-coupled receptor 87 (GPR87) promotes the growth and metastasis of CD133(+) cancer stem-like cells in hepatocellular carcinoma. PLoS One 2013; 8: e61056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Zhang Y, Qian Y, Lu W, Chen X . The G protein-coupled receptor 87 is necessary for p53-dependent cell survival in response to genotoxic stress. Cancer Res 2009; 69: 6049–6056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Okumura S, Baba H, Kumada T, Nanmoku K, Nakajima H, Nakane Y et al. Cloning of a G-protein-coupled receptor that shows an activity to transform NIH3T3 cells and is expressed in gastric cancer cells. Cancer Sci 2004; 95: 131–135.

    Article  CAS  PubMed  Google Scholar 

  94. Marshall JC, Collins JW, Nakayama J, Horak CE, Liewehr DJ, Steinberg SM et al. Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 2012; 104: 1306–1319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Komachi M, Sato K, Tobo M, Mogi C, Yamada T, Ohta H et al. Orally active lysophosphatidic acid receptor antagonist attenuates pancreatic cancer invasion and metastasis in vivo. Cancer Sci 2012; 103: 1099–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Watson C, Long JS, Orange C, Tannahill CL, Mallon E, McGlynn LM et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol 2010; 177: 2205–2215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Kothapalli R, Kusmartseva I, Loughran TP . Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochim Biophys Acta 2002; 1579: 117–123.

    Article  CAS  PubMed  Google Scholar 

  98. Yoshida Y, Nakada M, Sugimoto N, Harada T, Hayashi Y, Kita D et al. Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 2010; 126: 2341–2352.

    Article  CAS  PubMed  Google Scholar 

  99. Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW . Spingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 2005; 64: 695–705.

    Article  CAS  PubMed  Google Scholar 

  100. Cattoretti G, Mandelbaum J, Lee N, Chaves AH, Mahler AM, Chadburn A et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res 2009; 69: 8686–8692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J et al. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 2012; 40: 1619–1626.

    CAS  PubMed  Google Scholar 

  102. Patmanathan SN, Yap LF, Murray PG, Paterson IC . The antineoplastic properties of FTY720: evidence for the repurposing of fingolimod. J Cell Mol Med 2015; 19: 2329–2340.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Ravichandran KS . Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 2011; 35: 445–455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Graham DK, DeRyckere D, Davies KD, Earp HS . The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14: 769–785.

    Article  CAS  PubMed  Google Scholar 

  105. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450: 430–434.

    Article  CAS  PubMed  Google Scholar 

  106. Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA . Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 2013; 288: 22248–22256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Shiratsuchi T, Futamura M, Oda K, Nishimori H, Nakamura Y, Tokino T . Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 1998; 247: 597–604.

    Article  CAS  PubMed  Google Scholar 

  108. Yoshida Y, Oshika Y, Fukushima Y, Tokunaga T, Hatanaka H, Kijima H et al. Expression of angiostatic factors in colorectal cancer. Int J Oncol 1999; 15: 1221–1225.

    CAS  PubMed  Google Scholar 

  109. Fukushima Y, Oshika Y, Tsuchida T, Tokunaga T, Hatanaka H, Kijima H et al. Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer. Int J Oncol 1998; 13: 967–970.

    CAS  PubMed  Google Scholar 

  110. Lee JH, Koh JT, Shin BA, Ahn KY, Roh JH, Kim YJ et al. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer. Int J Oncol 2001; 18: 355–361.

    CAS  PubMed  Google Scholar 

  111. Nam DH, Park K, Suh YL, Kim JH . Expression of VEGF and brain specific angiogenesis inhibitor-1 in glioblastoma: prognostic significance. Oncol Rep 2004; 11: 863–869.

    CAS  PubMed  Google Scholar 

  112. Kaur B, Brat DJ, Calkins CC, Van Meir EG . Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 2003; 162: 19–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Cork SM, Van Meir EG . Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J Mol Med (Berl) 2011; 89: 743–752.

    Article  CAS  Google Scholar 

  114. Hatanaka H, Oshika Y, Abe Y, Yoshida Y, Hashimoto T, Handa A et al. Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1). Int J Mol Med 2000; 5: 181–183.

    CAS  PubMed  Google Scholar 

  115. Kudo S, Konda R, Obara W, Kudo D, Tani K, Nakamura Y et al. Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma. Oncol Rep 2007; 18: 785–791.

    CAS  PubMed  Google Scholar 

  116. Honda Z, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 1991; 349: 342–346.

    Article  CAS  PubMed  Google Scholar 

  117. Izumi T, Shimizu T . Platelet-activating factor receptor: gene expression and signal transduction. Biochim Biophys Acta 1995; 1259: 317–333.

    Article  PubMed  Google Scholar 

  118. Ishii S, Nagase T, Tashiro F, Ikuta K, Sato S, Waga I et al. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor. EMBO J 1997; 16: 133–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Giaginis C, Kourou E, Giagini A, Goutas N, Patsouris E, Kouraklis G et al. Platelet-activating factor (PAF) receptor expression is associated with histopathological stage and grade and patients' survival in gastric adenocarcinoma. Neoplasma 2014; 61: 309–317.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang L, Wang D, Jiang W, Edwards D, Qiu W, Barroilhet LM et al. Activated networking of platelet activating factor receptor and FAK/STAT1 induces malignant potential in BRCA1-mutant at-risk ovarian epithelium. Reprod Biol Endocrinol 2010; 8: 74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Melnikova VO, Mourad-Zeidan AA, Lev DC, Bar-Eli M . Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem 2006; 281: 2911–2922.

    Article  CAS  PubMed  Google Scholar 

  122. Aponte M, Jiang W, Lakkis M, Li MJ, Edwards D, Albitar L et al. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer. Cancer Res 2008; 68: 5839–5848.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Yu Y, Zhang X, Hong S, Zhang M, Cai Q, Jiang W et al. The expression of platelet-activating factor receptor modulates the cisplatin sensitivity of ovarian cancer cells: a novel target for combination therapy. Br J Cancer 2014; 111: 515–524.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Onuchic AC, Machado CM, Saito RF, Rios FJ, Jancar S, Chammas R . Expression of PAFR as part of a prosurvival response to chemotherapy: a novel target for combination therapy in melanoma. Mediators Inflamm 2012; 2012: 175408.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Melnikova VO, Balasubramanian K, Villares GJ, Dobroff AS, Zigler M, Wang H et al. Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. J Biol Chem 2009; 284: 28845–28855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Sun L, He Z, Ke J, Li S, Wu X, Lian L et al. PAF receptor antagonist Ginkgolide B inhibits tumourigenesis and angiogenesis in colitis-associated cancer. Int J Clin Exp Pathol 2015; 8: 432–440.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461: 1282–1286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 2009; 69: 2826–2832.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Thorburn AN, Macia L, Mackay CR . Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 2014; 40: 833–842.

    Article  CAS  PubMed  Google Scholar 

  130. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159–166.

    Article  CAS  PubMed  Google Scholar 

  131. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L . The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121: 91–119.

    Article  CAS  PubMed  Google Scholar 

  132. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF . A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun 1997; 239: 543–547.

    Article  CAS  PubMed  Google Scholar 

  133. Brown AJ, Jupe S, Briscoe CP . A family of fatty acid binding receptors. DNA Cell Biol 2005; 24: 54–61.

    Article  CAS  PubMed  Google Scholar 

  134. Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD . Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 2014; 172: 3254–3265.

    Article  CAS  Google Scholar 

  135. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 11312–11319.

    Article  CAS  PubMed  Google Scholar 

  136. Nilsson NE, Kotarsky K, Owman C, Olde B . Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003; 303: 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  137. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278: 25481–25489.

    Article  CAS  PubMed  Google Scholar 

  138. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem 2005; 280: 26649–26652.

    Article  CAS  PubMed  Google Scholar 

  139. Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G . Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem 2008; 283: 32913–32924.

    Article  CAS  PubMed  Google Scholar 

  140. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003; 278: 11303–11311.

    Article  CAS  PubMed  Google Scholar 

  141. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003; 422: 173–176.

    Article  CAS  PubMed  Google Scholar 

  142. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B . A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 2003; 301: 406–410.

    Article  CAS  PubMed  Google Scholar 

  143. Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 2014; 513: 124–127.

    Article  CAS  PubMed  Google Scholar 

  144. Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S et al. Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem 2007; 282: 29248–29255.

    Article  CAS  PubMed  Google Scholar 

  145. Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M et al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 2012; 82: 843–859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Tikhonova IG, Poerio E . Free fatty acid receptors: structural models and elucidation of ligand binding interactions. BMC Struct Biol 2015; 15: 16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11: 90–94.

    Article  CAS  PubMed  Google Scholar 

  148. Hudson BD, Shimpukade B, Milligan G, Ulven T . The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 2014; 289: 20345–20358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Watson SJ, Brown AJ, Holliday ND . Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 2012; 81: 631–642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Wang J, Wu X, Simonavicius N, Tian H, Ling L . Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 2006; 281: 34457–34464.

    Article  CAS  PubMed  Google Scholar 

  151. Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H et al. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 2013; 288: 10684–10691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Nikaido Y, Koyama Y, Yoshikawa Y, Furuya T, Takeda S . Mutation analysis and molecular modeling for the investigation of ligand-binding modes of GPR84. J Biochem 2015; 157: 311–320.

    Article  CAS  PubMed  Google Scholar 

  153. Kebede MA, Alquier T, Latour MG, Poitout V . Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab 2009; 11 (Suppl 4): 10–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40: 128–139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L et al. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res 2014; 74: 1166–1178.

    Article  CAS  PubMed  Google Scholar 

  156. Bermudez Y, Benavente CA, Meyer RG, Coyle WR, Jacobson MK, Jacobson EL . Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation. PLoS One 2011; 6: e20487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D . G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 2011; 128: 847–856.

    Article  CAS  PubMed  Google Scholar 

  158. Nehra D, Pan AH, Le HD, Fallon EM, Carlson SJ, Kalish BT et al. Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target? J Surg Res 2014; 188: 451–458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan B et al. Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 2013; 32: 5541–5550.

    Article  CAS  PubMed  Google Scholar 

  160. Fukushima K, Yamasaki E, Ishii S, Tomimatsu A, Takahashi K, Hirane M et al. Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells. Biochem Biophys Res Commun 2015; 465: 512–515.

    Article  CAS  PubMed  Google Scholar 

  161. Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 2015; 352: 380–394.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Halder S, Kumar S, Sharma R . The therapeutic potential of GPR120: a patent review. Expert Opin Ther 2013; 23: 1581–1590.

    Article  CAS  Google Scholar 

  163. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015; 517: 209–213.

    Article  CAS  PubMed  Google Scholar 

  164. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M . Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 1995; 270: 18910–18916.

    Article  CAS  PubMed  Google Scholar 

  165. Hirata M, Kakizuka A, Aizawa M, Ushikubi F, Narumiya S . Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci USA 1994; 91: 11192–11196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193: 255–261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Monneret G, Gravel S, Diamond M, Rokach J, Powell WS . Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 2001; 98: 1942–1948.

    Article  CAS  PubMed  Google Scholar 

  168. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S . Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997; 122: 217–224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Kobayashi T, Kiriyama M, Hirata T, Hirata M, Ushikubi F, Narumiya S . Identification of domains conferring ligand binding specificity to the prostanoid receptor. Studies on chimeric prostacyclin/prostaglandin D receptors. J Biol Chem 1997; 272: 15154–15160.

    Article  CAS  PubMed  Google Scholar 

  170. Sawyer N, Cauchon E, Chateauneuf A, Cruz RP, Nicholson DW, Metters KM et al. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br J Pharmacol 2002; 137: 1163–1172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Abramovitz M, Adam M, Boie Y, Carriere M, Denis D, Godbout C et al. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta 2000; 1483: 285–293.

    Article  CAS  PubMed  Google Scholar 

  172. Ungrin MD, Carriere MC, Denis D, Lamontagne S, Sawyer N, Stocco R et al. Key structural features of prostaglandin E(2) and prostanoid analogs involved in binding and activation of the human EP(1) prostanoid receptor. Mol Pharmacol 2001; 59: 1446–1456.

    Article  CAS  PubMed  Google Scholar 

  173. Brink C . Structural manipulation of eicosanoid receptors and cellular signaling. Sci World J 2007; 7: 1285–1306.

    Article  CAS  Google Scholar 

  174. Kobayashi T, Ushikubi F, Narumiya S . Amino acid residues conferring ligand binding properties of prostaglandin I and prostaglandin D receptors. Identification by site-directed mutagenesis. J Biol Chem 2000; 275: 24294–24303.

    Article  CAS  PubMed  Google Scholar 

  175. Li Y, Zhu F, Vaidehi N, Goddard WA 3rd, Sheinerman F, Reiling S et al. Prediction of the 3D structure and dynamics of human DP G-protein coupled receptor bound to an agonist and an antagonist. J Am Chem Soc 2007; 129: 10720–10731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Hata AN, Lybrand TP, Breyer RM . Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2. J Biol Chem 2005; 280: 32442–32451.

    Article  CAS  PubMed  Google Scholar 

  177. Pettipher R . The roles of the prostaglandin D(2) receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 2008; 153 (Suppl 1): S191–S199.

    Article  CAS  PubMed  Google Scholar 

  178. Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y . The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65: 1010–1052.

    Article  PubMed  CAS  Google Scholar 

  179. Stillman BA, Audoly L, Breyer RM . A conserved threonine in the second extracellular loop of the human EP2 and EP4 receptors is required for ligand binding. Eur J Pharmacol 1998; 357: 73–82.

    Article  CAS  PubMed  Google Scholar 

  180. Zare B, Madadkar-Sobhani A, Dastmalchi S, Mahmoudian M . Prediction of the human EP1 receptor binding site by homology modeling and molecular dynamics simulation. Sci Pharm 2011; 79: 793–816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Natarajan C, Hata AN, Hamm HE, Zent R, Breyer RM . Extracellular loop II modulates GTP sensitivity of the prostaglandin EP3 receptor. Mol Pharmacol 2013; 83: 206–216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Kedzie KM, Donello JE, Krauss HA, Regan JW, Gil DW . A single amino-acid substitution in the EP2 prostaglandin receptor confers responsiveness to prostacyclin analogs. Mol Pharmacol 1998; 54: 584–590.

    Article  CAS  PubMed  Google Scholar 

  183. Negishi M, Irie A, Sugimoto Y, Namba T, Ichikawa A . Selective coupling of prostaglandin E receptor EP3D to Gi and Gs through interaction of alpha-carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem 1995; 270: 16122–16127.

    Article  CAS  PubMed  Google Scholar 

  184. Audoly L, Breyer RM . Substitution of charged amino acid residues in transmembrane regions 6 and 7 affect ligand binding and signal transduction of the prostaglandin EP3 receptor. Mol Pharmacol 1997; 51: 61–68.

    Article  CAS  PubMed  Google Scholar 

  185. Huang C, Tai HH . Expression and site-directed mutagenesis of mouse prostaglandin E2 receptor EP3 subtype in insect cells. Biochem J 1995; 307 (Pt 2): 493–498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Pierce KL, Regan JW . Prostanoid receptor heterogeneity through alternative mRNA splicing. Life Sci 1998; 62: 1479–1483.

    Article  CAS  PubMed  Google Scholar 

  187. Yokomizo T . Two distinct leukotriene B4 receptors, BLT1 and BLT2. J Biochem 2015; 157: 65–71.

    Article  CAS  PubMed  Google Scholar 

  188. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T . A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000; 192: 421–432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Yokomizo T, Kato K, Hagiya H, Izumi T, Shimizu T . Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J Biol Chem 2001; 276: 12454–12459.

    Article  CAS  PubMed  Google Scholar 

  190. Okuno T, Iizuka Y, Okazaki H, Yokomizo T, Taguchi R, Shimizu T . 12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2. J Exp Med 2008; 205: 759–766.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Sabirsh A, Bywater RP, Bristulf J, Owman C, Haeggstrom JZ . Residues from transmembrane helices 3 and 5 participate in leukotriene B4 binding to BLT1. Biochemistry 2006; 45: 5733–5744.

    Article  CAS  PubMed  Google Scholar 

  192. Basu S, Jala VR, Mathis S, Rajagopal ST, Del Prete A, Maturu P et al. Critical role for polar residues in coupling leukotriene B4 binding to signal transduction in BLT1. J Biol Chem 2007; 282: 10005–10017.

    Article  CAS  PubMed  Google Scholar 

  193. Sarau HM, Ames RS, Chambers J, Ellis C, Elshourbagy N, Foley JJ et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol 1999; 56: 657–663.

    Article  CAS  PubMed  Google Scholar 

  194. Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000; 275: 30531–30536.

    Article  CAS  PubMed  Google Scholar 

  195. Nothacker HP, Wang Z, Zhu Y, Reinscheid RK, Lin SH, Civelli O . Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. Mol Pharmacol 2000; 58: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  196. Dong X, Zhao Y, Huang X, Lin K, Chen J, Wei E et al. Structure-based drug design using GPCR homology modeling: toward the discovery of novel selective CysLT2 antagonists. Eur J Med Chem 2013; 62: 754–763.

    Article  CAS  PubMed  Google Scholar 

  197. Kanaoka Y, Maekawa A, Austen KF . Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 2013; 288: 10967–10972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 2006; 25: 4615–4627.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Pugliese AM, Trincavelli ML, Lecca D, Coppi E, Fumagalli M, Ferrario S et al. Functional characterization of two isoforms of the P2Y-like receptor GPR17: [35S]GTPgammaS binding and electrophysiological studies in 1321N1 cells. Am J Physiol Cell Physiol 2009; 297: C1028–C1040.

    Article  CAS  PubMed  Google Scholar 

  200. Daniele S, Lecca D, Trincavelli ML, Ciampi O, Abbracchio MP, Martini C . Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17. Cell Signal 2010; 22: 697–706.

    Article  CAS  PubMed  Google Scholar 

  201. Eberini I, Daniele S, Parravicini C, Sensi C, Trincavelli ML, Martini C et al. In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. J Comput Aided Mol Des 2011; 25: 743–752.

    Article  CAS  PubMed  Google Scholar 

  202. Parravicini C, Abbracchio MP, Fantucci P, Ranghino G . Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach. BMC Struct Biol 2010; 10: 8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  203. Benned-Jensen T, Rosenkilde MM . Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. Br J Pharmacol 2010; 159: 1092–1105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Maekawa A, Balestrieri B, Austen KF, Kanaoka Y . GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proc Natl Acad Sci USA 2009; 106: 11685–11690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Caffarel MM, Andradas C, Perez-Gomez E, Guzman M, Sanchez C . Cannabinoids: a new hope for breast cancer therapy? Cancer Treat Rev 2012; 38: 911–918.

    Article  CAS  PubMed  Google Scholar 

  206. Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K et al. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun 2006; 347: 827–832.

    Article  CAS  PubMed  Google Scholar 

  207. Reggio PH . Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem 2010; 17: 1468–1486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Poso A, Huffman JW . Targeting the cannabinoid CB2 receptor: modelling and structural determinants of CB2 selective ligands. Br J Pharmacol 2008; 153: 335–346.

    Article  CAS  PubMed  Google Scholar 

  209. Shim JY . Understanding functional residues of the cannabinoid CB1. Curr Top Med Chem 2010; 10: 779–798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Raitio KH, Salo OM, Nevalainen T, Poso A, Jarvinen T . Targeting the cannabinoid CB2 receptor: mutations, modeling and development of CB2 selective ligands. Curr Med Chem 2005; 12: 1217–1237.

    Article  CAS  PubMed  Google Scholar 

  211. Ahn KH, Bertalovitz AC, Mierke DF, Kendall DA . Dual role of the second extracellular loop of the cannabinoid receptor 1: ligand binding and receptor localization. Mol Pharmacol 2009; 76: 833–842.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Marcu J, Shore DM, Kapur A, Trznadel M, Makriyannis A, Reggio PH et al. Novel insights into CB1 cannabinoid receptor signaling: a key interaction identified between the extracellular-3 loop and transmembrane helix 2. J Pharmacol Exp Ther 2013; 345: 189–197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K et al. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 2010; 285: 17954–17964.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Song M, Nishihara R, Wu K, Qian ZR, Kim SA, Sukawa Y et al. Marine omega-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability. J Natl Cancer Inst 2015; 107: pii: djv007 doi:10.1093/jnci/djv007.

  215. Serhan CN, Chiang N, Van Dyke TE . Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 8: 349–361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Hong S, Lu Y . Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol 2013; 4: 13.

    PubMed Central  PubMed  Google Scholar 

  217. Schwab JM, Chiang N, Arita M, Serhan CN . Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447: 869–874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN . Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 1997; 272: 6972–6978.

    Article  CAS  PubMed  Google Scholar 

  219. Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN . Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am J Pathol 2001; 158: 3–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N . Novel anti-inflammatory—pro-resolving mediators and their receptors. Curr Top Med Chem 2011; 11: 629–647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA 2010; 107: 1660–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN . Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol 2012; 180: 2018–2027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 2005; 201: 713–722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN . Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 2007; 178: 3912–3917.

    Article  CAS  PubMed  Google Scholar 

  225. Bena S, Brancaleone V, Wang JM, Perretti M, Flower RJ . Annexin A1 interaction with the FPR2/ALX receptor: identification of distinct domains and downstream associated signaling. J Biol Chem 2012; 287: 24690–24697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Cash JL, Norling LV, Perretti M . Resolution of inflammation: targeting GPCRs that interact with lipids and peptides. Drug Discov Today 2014; 19: 1186–1192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK et al. Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 2011; 286: 33832–33840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N et al. Identification of a novel human eicosanoid receptor coupled to G(i/o). J Biol Chem 2002; 277: 31459–31465.

    Article  CAS  PubMed  Google Scholar 

  229. Hosoi T, Sugikawa E, Chikada A, Koguchi Y, Ohnuki T . TG1019/OXE, a Galpha(i/o)-protein-coupled receptor, mediates 5-oxo-eicosatetraenoic acid-induced chemotaxis. Biochem Biophys Res Commun 2005; 334: 987–995.

    Article  CAS  PubMed  Google Scholar 

  230. Jones CE, Holden S, Tenaillon L, Bhatia U, Seuwen K, Tranter P et al. Expression and characterization of a 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Mol Pharmacol 2003; 63: 471–477.

    Article  CAS  PubMed  Google Scholar 

  231. Koike D, Obinata H, Yamamoto A, Takeda S, Komori H, Nara F et al. 5-Oxo-eicosatetraenoic acid-induced chemotaxis: identification of a responsible receptor hGPCR48 and negative regulation by G protein G(12/13). J Biochem 2006; 139: 543–549.

    Article  CAS  PubMed  Google Scholar 

  232. Sales KJ, Milne SA, Williams AR, Anderson RA, Jabbour HN . Expression, localization, and signaling of prostaglandin F2 alpha receptor in human endometrial adenocarcinoma: regulation of proliferation by activation of the epidermal growth factor receptor and mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 2004; 89: 986–993.

    Article  CAS  PubMed  Google Scholar 

  233. Akiyama K, Ohga N, Maishi N, Hida Y, Kitayama K, Kawamoto T et al. The F-prostaglandin receptor is a novel marker for tumor endothelial cells in renal cell carcinoma. Pathol Int 2013; 63: 37–44.

    Article  CAS  PubMed  Google Scholar 

  234. Romanuik TL, Wang G, Morozova O, Delaney A, Marra MA, Sadar MD . LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics 2010; 3: 43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  235. Gustafsson A, Hansson E, Kressner U, Nordgren S, Andersson M, Lonnroth C et al. Prostanoid receptor expression in colorectal cancer related to tumor stage, differentiation and progression. Acta Oncol 2007; 46: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  236. Pradhan MP, Desai A, Palakal MJ . Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. Syst Biol 2013; 7: 141.

    Google Scholar 

  237. Chen YC, Huang RL, Huang YK, Liao YP, Su PH, Wang HC et al. Methylomics analysis identifies epigenetically silenced genes and implies an activation of beta-catenin signaling in cervical cancer. Int J Cancer 2014; 135: 117–127.

    Article  CAS  PubMed  Google Scholar 

  238. Spisak S, Kalmar A, Galamb O, Wichmann B, Sipos F, Peterfia B et al. Genome-wide screening of genes regulated by DNA methylation in colon cancer development. PLoS One 2012; 7: e46215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 2011; 17: 5582–5592.

    Article  CAS  PubMed  Google Scholar 

  240. Shen M, Zheng T, Lan Q, Zhang Y, Hosgood HD 3rd, Zahm SH et al. Polymorphisms in integrin genes and lymphoma risk. Leuk Res 2011; 35: 968–970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Alaa M, Suzuki M, Yoshino M, Tian L, Suzuki H, Nagato K et al. Prostaglandin E2 receptor 2 overexpression in squamous cell carcinoma of the lung correlates with p16INK4A methylation and an unfavorable prognosis. Int J Oncol 2009; 34: 805–812.

    CAS  PubMed  Google Scholar 

  242. Gustafsson A, Hansson E, Kressner U, Nordgren S, Andersson M, Wang W et al. EP1-4 subtype, COX and PPAR gamma receptor expression in colorectal cancer in prediction of disease-specific mortality. Int J Cancer 2007; 121: 232–240.

    Article  CAS  PubMed  Google Scholar 

  243. Kleivi K, Lind GE, Diep CB, Meling GI, Brandal LT, Nesland JM et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer 2007; 6: 2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  244. Sugino Y, Misawa A, Inoue J, Kitagawa M, Hosoi H, Sugimoto T et al. Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 2007; 26: 7401–7413.

    Article  CAS  PubMed  Google Scholar 

  245. Catalano RD, Wilson MR, Boddy SC, McKinlay AT, Sales KJ, Jabbour HN . Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth. PLoS One 2011; 6: e19209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. Huang HF, Shu P, Murphy TF, Aisner S, Fitzhugh VA, Jordan ML . Significance of divergent expression of prostaglandin EP4 and EP3 receptors in human prostate cancer. Mol Cancer Res 2013; 11: 427–439.

    Article  CAS  PubMed  Google Scholar 

  247. Rocconi RP, Kirby TO, Seitz RS, Beck R, Straughn Jr JM, Alvarez RD et al. Lipoxygenase pathway receptor expression in ovarian cancer. Reprod Sci 2008; 15: 321–326.

    Article  PubMed  Google Scholar 

  248. Hennig R, Ding XZ, Tong WG, Schneider MB, Standop J, Friess H et al. 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 2002; 161: 421–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  249. Kim EY, Seo JM, Kim C, Lee JE, Lee KM, Kim JH . BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway. Free Rad Biol Med 2010; 49: 1072–1081.

    Article  CAS  PubMed  Google Scholar 

  250. Magnusson C, Liu J, Ehrnstrom R, Manjer J, Jirstrom K, Andersson T et al. Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. Int J Cancer 2011; 129: 9–22.

    Article  CAS  PubMed  Google Scholar 

  251. Ohd JF, Nielsen CK, Campbell J, Landberg G, Lofberg H, Sjolander A . Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology 2003; 124: 57–70.

    Article  CAS  PubMed  Google Scholar 

  252. Parhamifar L, Jeppsson B, Sjolander A . Activation of cPLA2 is required for leukotriene D4-induced proliferation in colon cancer cells. Carcinogenesis 2005; 26: 1988–1998.

    Article  CAS  PubMed  Google Scholar 

  253. Matsuyama M, Hayama T, Funao K, Kawahito Y, Sano H, Takemoto Y et al. Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol Rep 2007; 18: 99–104.

    CAS  PubMed  Google Scholar 

  254. Seo JM, Cho KJ, Kim EY, Choi MH, Chung BC, Kim JH . Up-regulation of BLT2 is critical for the survival of bladder cancer cells. Exp Mol Med 2011; 43: 129–137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Kim H, Choi JA, Kim JH . Ras promotes transforming growth factor-beta (TGF-beta)-induced epithelial-mesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells. J Biol Chem 2014; 289: 22151–22160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Lee JW, Kim JH . Activation of the leukotriene B4 receptor 2-reactive oxygen species (BLT2-ROS) cascade following detachment confers anoikis resistance in prostate cancer cells. J Biol Chem 2013; 288: 30054–30063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Lee JW, Kim GY, Kim JH . Androgen receptor is up-regulated by a BLT2-linked pathway to contribute to prostate cancer progression. Biochem Biophys Res Commun 2012; 420: 428–433.

    Article  CAS  PubMed  Google Scholar 

  258. Seo JM, Park S, Kim JH . Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem 2012; 287: 13840–13849.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  259. Kim EY, Seo JM, Cho KJ, Kim JH . Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 2010; 29: 1167–1178.

    Article  CAS  PubMed  Google Scholar 

  260. Drost AC, Seitz G, Boehmler A, Funk M, Norz KP, Zipfel A et al. The G protein-coupled receptor CysLT1 mediates chemokine-like effects and prolongs survival in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53: 665–673.

    Article  CAS  PubMed  Google Scholar 

  261. Salim T, Sand-Dejmek J, Sjolander A . The inflammatory mediator leukotriene D(4) induces subcellular beta-catenin translocation and migration of colon cancer cells. Exp Cell Res 2014; 321: 255–266.

    Article  CAS  PubMed  Google Scholar 

  262. Kim H, Park GS, Lee JE, Kim JH . A leukotriene B4 receptor-2 is associated with paclitaxel resistance in MCF-7/DOX breast cancer cells. Br J Cancer 2013; 109: 351–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Parrill AL, Tigyi G . Integrating the puzzle pieces: the current atomistic picture of phospholipid-G protein coupled receptor interactions. Biochim Biophys Acta 2013; 1831: 2–12.

    Article  CAS  PubMed  Google Scholar 

  264. Kitayama J, Shida D, Sako A, Ishikawa M, Hama K, Aoki J et al. Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma. Breast Cancer Res 2004; 6: R640–R646.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Chen J, Lan T, Zhang W, Dong L, Kang N, Zhang S et al. Feed-forward reciprocal activation of PAFR and STAT3 regulates epithelial-mesenchymal transition in non-small cell lung cancer. Cancer Res 2015; 75: 4198–4210.

    Article  CAS  PubMed  Google Scholar 

  266. Meisen WH, Dubin S, Sizemore ST, Mathsyaraja H, Thies K, Lehman NL et al. Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther 2015; 14: 307–314.

    Article  CAS  PubMed  Google Scholar 

  267. Sundaram S, Ghosh J . Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochem Biophys Res Commun 2006; 339: 93–98.

    Article  CAS  PubMed  Google Scholar 

  268. Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc Natl Acad Sci USA 2005; 102: 6027–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yu W, Ma S, Wang L, Zuo B, Li M, Qiao Z et al. Upregulation of GPR34 expression affects the progression and prognosis of human gastric adenocarcinoma by PI3K/PDK1/AKT pathway. Histol Histopathol 2013; 28: 1629–1638.

    CAS  PubMed  Google Scholar 

  270. Yun CC, Sun H, Wang D, Rusovici R, Castleberry A, Hall RA et al. LPA2 receptor mediates mitogenic signals in human colon cancer cells. Am J Physiol Cell Physiol 2005; 289: C2–C11.

    Article  CAS  PubMed  Google Scholar 

  271. Chang J, Vacher J, Yao B, Fan X, Zhang B, Harris RC et al. Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis. Oncotarget 2015; 6: 33500–33511.

    Article  PubMed Central  PubMed  Google Scholar 

  272. Galamb O, Sipos F, Spisak S, Galamb B, Krenacs T, Valcz G et al. Potential biomarkers of colorectal adenoma-dysplasia-carcinoma progression: mRNA expression profiling and in situ protein detection on TMAs reveal 15 sequentially upregulated and 2 downregulated genes. Cell Oncol 2009; 31: 19–29.

    CAS  PubMed  Google Scholar 

  273. Tian D, Hu H, Sun Y, Tang Y, Lei M, Liu L et al. Expression of brainspecific angiogenesis inhibitor1 and association with p53, microvessel density and vascular endothelial growth factor in the tissue of human bladder transitional cell carcinoma. Mol Med Rep 2015; 12: 4522–4529.

    Article  CAS  PubMed  Google Scholar 

  274. Ansell SM, Akasaka T, McPhail E, Manske M, Braggio E, Price-Troska T et al. t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 2012; 120: 3949–3957.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. Quint K, Stiel N, Neureiter D, Schlicker HU, Nimsky C, Ocker M et al. The role of sphingosine kinase isoforms and receptors S1P1, S1P2, S1P3, and S1P5 in primary, secondary, and recurrent glioblastomas. Tumour Biol 2014; 35: 8979–8989.

    Article  CAS  PubMed  Google Scholar 

  276. Perez-Gomez E, Andradas C, Flores JM, Quintanilla M, Paramio JM, Guzman M et al. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene 2013; 32: 2534–2542.

    Article  CAS  PubMed  Google Scholar 

  277. Qin Y, Verdegaal EM, Siderius M, Bebelman JP, Smit MJ, Leurs R et al. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res 2011; 24: 207–218.

    Article  CAS  PubMed  Google Scholar 

  278. Kiss GN, Fells JI, Gupte R, Lee SC, Liu J, Nusser N et al. Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions. Mol Pharmacol 2012; 82: 1162–1173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Okabe K, Hayashi M, Yamawaki Y, Teranishi M, Honoki K, Mori T et al. Possible involvement of lysophosphatidic acid receptor-5 gene in the acquisition of growth advantage of rat tumor cells. Mol Carcinog 2011; 50: 635–642.

    Article  CAS  PubMed  Google Scholar 

  280. Funke M, Zhao Z, Xu Y, Chun J, Tager AM . The lysophosphatidic acid receptor LPA1 promotes epithelial cell apoptosis after lung injury. Am J Respir Cell Mol Biol 2012; 46: 355–364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA et al. Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin Cancer Res 1999; 5: 4308–4318.

    CAS  PubMed  Google Scholar 

  282. Ishdorj G, Graham BA, Hu X, Chen J, Johnston JB, Fang X et al. Lysophosphatidic acid protects cancer cells from histone deacetylase (HDAC) inhibitor-induced apoptosis through activation of HDAC. J Biol Chem 2008; 283: 16818–16829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Altman MK, Gopal V, Jia W, Yu S, Hall H, Mills GB et al. Targeting melanoma growth and viability reveals dualistic functionality of the phosphonothionate analogue of carba cyclic phosphatidic acid. Mol Cancer 2010; 9: 140.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  284. Han C, Wu T . Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem 2005; 280: 24053–24063.

    Article  CAS  PubMed  Google Scholar 

  285. Okuyama T, Ishihara S, Sato H, Rumi MA, Kawashima K, Miyaoka Y et al. Activation of prostaglandin E2-receptor EP2 and EP4 pathways induces growth inhibition in human gastric carcinoma cell lines. J Lab Clin Med 2002; 140: 92–102.

    Article  CAS  PubMed  Google Scholar 

  286. Inada M, Takita M, Yokoyama S, Watanabe K, Tominari T, Matsumoto C et al. Direct melanoma cell contact induces stromal cell autocrine prostaglandin E2-EP4 receptor signaling that drives tumor growth, angiogenesis and metastasis. J Biol Chem 2015, e-pub ahead of print 16 October 2015.

  287. Huang RY, Li SS, Guo HZ, Huang Y, Zhang X, Li MY et al. Thromboxane A2 exerts promoting effects on cell proliferation through mediating cyclooxygenase-2 signal in lung adenocarcinoma cells. J Cancer Res Clin Oncol 2014; 140: 375–386.

    Article  CAS  PubMed  Google Scholar 

  288. Sung YM, He G, Fischer SM . Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res 2005; 65: 9304–9311.

    Article  CAS  PubMed  Google Scholar 

  289. Taghavi P, Verhoeven E, Jacobs JJ, Lambooij JP, Stortelers C, Tanger E et al. In vitro genetic screen identifies a cooperative role for LPA signaling and c-Myc in cell transformation. Oncogene 2008; 27: 6806–6816.

    Article  CAS  PubMed  Google Scholar 

  290. Rundhaug JE, Simper MS, Surh I, Fischer SM . The role of the EP receptors for prostaglandin E2 in skin and skin cancer. Cancer Metastasis Rev 2011; 30: 465–480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Sung YM, He G, Hwang DH, Fischer SM . Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 2006; 25: 5507–5516.

    Article  CAS  PubMed  Google Scholar 

  292. Kastner S, Voss T, Keuerleber S, Glockel C, Freissmuth M, Sommergruber W . Expression of G protein-coupled receptor 19 in human lung cancer cells is triggered by entry into S-phase and supports G(2)-M cell-cycle progression. Mol Cancer Res 2012; 10: 1343–1358.

    Article  CAS  PubMed  Google Scholar 

  293. Kargl J, Andersen L, Hasenohrl C, Feuersinger D, Stancic A, Fauland A et al. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis. Br J Pharmacol 2015, e-pub ahead of print 5 October 2015 doi:10.1111/bph.13345.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  294. Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008; 100: 1630–1642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A et al. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 2008; 19: 5435–5445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Chen M, Towers LN, O'Connor KL . LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol 2007; 292: C1927–C1933.

    Article  CAS  PubMed  Google Scholar 

  297. Lee SC, Fujiwara Y, Liu J, Yue J, Shimizu Y, Norman DD et al. Autotaxin, LPA receptors (1 and 5) exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Mol Cancer Res 2014; 13: 174–185.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  298. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 2008; 68: 6569–6577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  299. Hayashi M, Okabe K, Kato K, Okumura M, Fukui R, Fukushima N et al. Differential function of lysophosphatidic acid receptors in cell proliferation and migration of neuroblastoma cells. Cancer Lett 2012; 316: 91–96.

    Article  CAS  PubMed  Google Scholar 

  300. Okabe K, Hayashi M, Kato K, Okumura M, Fukui R, Honoki K et al. Lysophosphatidic acid receptor-3 increases tumorigenicity and aggressiveness of rat hepatoma RH7777 cells. Mol Carcinog 2013; 52: 247–254.

    Article  CAS  PubMed  Google Scholar 

  301. Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH . LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One 2011; 6: e29260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  302. Bai X, Wang J, Zhang L, Ma J, Zhang H, Xia S et al. Prostaglandin E(2) receptor EP1-mediated phosphorylation of focal adhesion kinase enhances cell adhesion and migration in hepatocellular carcinoma cells. Int J Oncol 2013; 42: 1833–1841.

    Article  CAS  PubMed  Google Scholar 

  303. Yang H, Ganguly A, Cabral F . Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem 2010; 285: 32242–32250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  304. Han C, Michalopoulos GK, Wu T . Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 2006; 207: 261–270.

    Article  CAS  PubMed  Google Scholar 

  305. Liu JF, Fong YC, Chang CS, Huang CY, Chen HT, Yang WH et al. Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells. Mol Cancer 2010; 9: 43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  306. Jiang J, Dingledine R . Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation. J Pharmacol Exp Ther 2013; 344: 360–367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  307. Kamiyama M, Pozzi A, Yang L, DeBusk LM, Breyer RM, Lin PC . EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene 2006; 25: 7019–7028.

    Article  CAS  PubMed  Google Scholar 

  308. Xin X, Majumder M, Girish GV, Mohindra V, Maruyama T, Lala PK . Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest 2012; 92: 1115–1128.

    Article  CAS  PubMed  Google Scholar 

  309. Yang L, Huang Y, Porta R, Yanagisawa K, Gonzalez A, Segi E et al. Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Res 2006; 66: 9665–9672.

    Article  CAS  PubMed  Google Scholar 

  310. Kumar JD, Holmberg C, Kandola S, Steele I, Hegyi P, Tiszlavicz L et al. Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells. PLoS One 2014; 9: e104877.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  311. Lee HJ, Park MK, Lee EJ, Lee CH . Resolvin D1 inhibits TGF-beta1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int J Biochem Cell Biol 2013; 45: 2801–2807.

    Article  CAS  PubMed  Google Scholar 

  312. Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T et al. Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 2003; 197: 221–232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  313. Yokota Y, Inoue H, Matsumura Y, Nabeta H, Narusawa M, Watanabe A et al. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems. Blood 2012; 120: 3444–3454.

    Article  CAS  PubMed  Google Scholar 

  314. Jo E, Sanna MG, Gonzalez-Cabrera PJ, Thangada S, Tigyi G, Osborne DA et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. Chem Biol 2005; 12: 703–715.

    Article  CAS  PubMed  Google Scholar 

  315. van Loenen PB, de Graaf C, Verzijl D, Leurs R, Rognan D, Peters SL et al. Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor. Eur J Pharmacol 2011; 667: 105–112.

    Article  CAS  PubMed  Google Scholar 

  316. Elbegdorj O, Westkaemper RB, Zhang Y . A homology modeling study toward the understanding of three-dimensional structure and putative pharmacological profile of the G-protein coupled receptor GPR55. J Mol Graph Model 2013; 39: 50–60.

    Article  CAS  PubMed  Google Scholar 

  317. Sum CS, Tikhonova IG, Costanzi S, Gershengorn MC . Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation. J Biol Chem 2009; 284: 3529–3536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. Chillar A, Wu J, So SP, Ruan KH . Involvement of non-conserved residues important for PGE2 binding to the constrained EP3 eLP2 using NMR and site-directed mutagenesis. FEBS Lett 2008; 582: 2863–2868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  319. Margan D, Borota A, Mracec M, Mracec M . 3D homology model of the human prostaglandin E2 receptor EP4 subtype. Rev Roum Chim 2012; 57: 39–44.

    CAS  Google Scholar 

  320. Neuschafer-Rube F, Engemaier E, Koch S, Boer U, Puschel GP . Identification by site-directed mutagenesis of amino acids contributing to ligand-binding specificity or signal transduction properties of the human FP prostanoid receptor. Biochem J 2003; 371: 443–449.

    Article  PubMed Central  PubMed  Google Scholar 

  321. Rehwald M, Neuschafer-Rube F, de Vries C, Puschel GP . Possible role for ligand binding of histidine 81 in the second transmembrane domain of the rat prostaglandin F2alpha receptor. FEBS Lett 1999; 443: 357–362.

    Article  CAS  PubMed  Google Scholar 

  322. Stitham J, Stojanovic A, Merenick BL, O'Hara KA, Hwa J . The unique ligand-binding pocket for the human prostacyclin receptor. Site-directed mutagenesis and molecular modeling. J Biol Chem 2003; 278: 4250–4257.

    Article  CAS  PubMed  Google Scholar 

  323. Feng W, Song ZH . Effects of D3.49A, R3.50A, and A6.34E mutations on ligand binding and activation of the cannabinoid-2 (CB2) receptor. Biochem Pharmacol 2003; 65: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  324. Rhee MH, Nevo I, Bayewitch ML, Zagoory O, Vogel Z . Functional role of tryptophan residues in the fourth transmembrane domain of the CB(2) cannabinoid receptor. J Neurochem 2000; 75: 2485–2491.

    Article  CAS  PubMed  Google Scholar 

  325. Mercier RW, Pei Y, Pandarinathan L, Janero DR, Zhang J, Makriyannis A . hCB2 ligand-interaction landscape: cysteine residues critical to biarylpyrazole antagonist binding motif and receptor modulation. Chem Biol 2010; 17: 1132–1142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  326. Ballesteros JA, Weinstein H . Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995; 25: 366–428.

    Article  CAS  Google Scholar 

  327. Okuno T, Ago H, Terawaki K, Miyano M, Shimizu T, Yokomizo T . Helix 8 of the leukotriene B4 receptor is required for the conformational change to the low affinity state after G-protein activation. J Biol Chem 2003; 278: 41500–41509.

    Article  CAS  PubMed  Google Scholar 

  328. Gaudreau R, Le Gouill C, Venne MH, Stankova J, Rola-Pleszczynski M . Threonine 308 within a putative casein kinase 2 site of the cytoplasmic tail of leukotriene B(4) receptor (BLT1) is crucial for ligand-induced, G-protein-coupled receptor-specific kinase 6-mediated desensitization. J Biol Chem 2002; 277: 31567–31576.

    Article  CAS  PubMed  Google Scholar 

  329. Lim HS, Park JJ, Ko K, Lee MH, Chung SK . Syntheses of sphingosine-1-phosphate analogues and their interaction with EDG/S1P receptors. Bioorg Med Chem Lett 2004; 14: 2499–2503.

    Article  CAS  PubMed  Google Scholar 

  330. Justus CR, Dong L, Yang LV . Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 2013; 4: 354.

    Article  PubMed Central  PubMed  Google Scholar 

  331. Takuwa Y, Takuwa N, Sugimoto N . The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J Biochem 2002; 131: 767–771.

    Article  CAS  PubMed  Google Scholar 

  332. Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP et al. Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 2007; 282: 15541–15549.

    Article  CAS  PubMed  Google Scholar 

  333. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 2006; 281: 22021–22028.

    Article  CAS  PubMed  Google Scholar 

  334. Graler MH, Grosse R, Kusch A, Kremmer E, Gudermann T, Lipp M . The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem 2003; 89: 507–519.

    Article  CAS  PubMed  Google Scholar 

  335. Singh LS, Berk M, Oates R, Zhao Z, Tan H, Jiang Y et al. Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 2007; 99: 1313–1327.

    Article  CAS  PubMed  Google Scholar 

  336. Meyer zu Heringdorf D, Jakobs KH . Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 2007; 1768: 923–940.

    Article  CAS  PubMed  Google Scholar 

  337. Chu ZL, Jones RM, He H, Carroll C, Gutierrez V, Lucman A et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007; 148: 2601–2609.

    Article  CAS  PubMed  Google Scholar 

  338. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K . GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 2008; 105: 2699–2704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  339. Brown SL, Jala VR, Raghuwanshi SK, Nasser MW, Haribabu B, Richardson RM . Activation and regulation of platelet-activating factor receptor: role of G(i) and G(q) in receptor-mediated chemotactic, cytotoxic, and cross-regulatory signals. J Immunol 2006; 177: 3242–3249.

    Article  CAS  PubMed  Google Scholar 

  340. Jabbour HN, Sales KJ . Prostaglandin receptor signalling and function in human endometrial pathology. Trends Endocrinol Metab 2004; 15: 398–404.

    Article  CAS  PubMed  Google Scholar 

  341. Carnini C, Accomazzo MR, Borroni E, Vitellaro-Zuccarello L, Durand T, Folco G et al. Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT2 receptor. FASEB J 2011; 25: 3519–3528.

    Article  CAS  PubMed  Google Scholar 

  342. Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF et al. Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: Functional distinction from CysLT1R. Proc Natl Acad Sci USA 2003; 100: 11589–11593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429: 188–193.

    Article  CAS  PubMed  Google Scholar 

  344. Samson MT, Small-Howard A, Shimoda LM, Koblan-Huberson M, Stokes AJ, Turner H . Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J Immunol 2003; 170: 4953–4962.

    Article  CAS  PubMed  Google Scholar 

  345. Bae YS, Park JC, He R, Ye RD, Kwak JY, Suh PG et al. Differential signaling of formyl peptide receptor-like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH2 or lipoxin A4 in human neutrophils. Mol Pharmacol 2003; 64: 721–730.

    Article  CAS  PubMed  Google Scholar 

  346. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198: 977–985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Perrakis and Dr Moolenaar for helpful discussions. The study was funded by Dutch Cancer Society grants UU2012-5712 and UU2009-4534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E E Voest.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Jaarsveld, M., Houthuijzen, J. & Voest, E. Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 35, 4021–4035 (2016). https://doi.org/10.1038/onc.2015.467

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.467

This article is cited by

Search

Quick links