Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis

Abstract

It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  Google Scholar 

  2. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384–388.

    Article  CAS  Google Scholar 

  3. Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 2014; 505: 212–217.

    Article  CAS  Google Scholar 

  4. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC . Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 1998; 47: 187–199.

    Article  CAS  Google Scholar 

  5. Salazar M, Lorente M, Garcia-Taboada E, Perez Gomez E, Davila D, Zuniga-Garcia P et al. Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation. Cell Death Differ 2015; 22: 131–144.

    Article  CAS  Google Scholar 

  6. Bowman A, Nusse R . Location, location, location: FoxM1 mediates beta-catenin nuclear translocation and promotes glioma tumorigenesis. Cancer Cell 2011; 20: 415–416.

    Article  CAS  Google Scholar 

  7. Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EW . Insights into a critical role of the FOXO3a-FOXM1 axis in DNA damage response and genotoxic drug resistance. Curr Drug Targets 2014; 15: 1–14.

    Article  Google Scholar 

  8. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146: 697–708.

    Article  CAS  Google Scholar 

  9. Scodelaro Bilbao P, Boland R . Extracellular ATP regulates FoxO family of transcription factors and cell cycle progression through PI3K/Akt in MCF-7 cells. Biochim Biophys Acta 2013; 1830: 4456–4469.

    Article  CAS  Google Scholar 

  10. Moriishi T, Kawai Y, Komori H, Rokutanda S, Eguchi Y, Tsujimoto Y et al. Bcl2 deficiency activates FoxO through Akt inactivation and accelerates osteoblast differentiation. PLoS One 2014; 9: e86629.

    Article  Google Scholar 

  11. Myatt SS, Lam EW . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    Article  CAS  Google Scholar 

  12. Cho EC, Kuo ML, Liu X, Yang L, Hsieh YC, Wang J et al. Tumor suppressor FOXO3 regulates ribonucleotide reductase subunit RRM2B and impacts on survival of cancer patients. Oncotarget 2014; 5: 4834–4844.

    PubMed  PubMed Central  Google Scholar 

  13. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009; 106: 1814–1819.

    Article  CAS  Google Scholar 

  14. Li J, Li P, Chen T, Gao G, Chen X, Du Y et al. Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer. Tumour Biol 2014; 36: 685–692.

    Article  CAS  Google Scholar 

  15. Boulias K, Horvitz HR . The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 2012; 15: 439–450.

    Article  CAS  Google Scholar 

  16. Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 2003; 34: 261–262.

    Article  CAS  Google Scholar 

  17. Shatseva T, Lee DY, Deng Z, Yang BB . MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124: 2826–2836.

    Article  CAS  Google Scholar 

  18. Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 2012; 11: 4352–4365.

    Article  CAS  Google Scholar 

  19. Siragam V, Rutnam ZJ, Yang W, Fang L, Luo L, Yang X et al. MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11. Oncotarget 2012; 3: 1370–1385.

    Article  Google Scholar 

  20. Rutnam ZJ, Yang BB . The non-coding 3' UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci 2012; 125: 2075–2085.

    Article  CAS  Google Scholar 

  21. Wang CH, Lee DY, Deng Z, Jeyapalan Z, Lee SC, Kahai S et al. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS One 2008; 3: e2420.

    Article  Google Scholar 

  22. Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW et al. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 2009; 11: 1031–1038.

    Article  CAS  Google Scholar 

  23. Lee DY, Deng Z, Wang CH, Yang BB . MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 2007; 104: 20350–20355.

    Article  CAS  Google Scholar 

  24. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  25. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  Google Scholar 

  26. Ebert MS, Sharp PA . MicroRNA sponges: progress and possibilities. RNA 2010; 16: 2043–2050.

    Article  CAS  Google Scholar 

  27. Lee DY, Shatseva T, Jeyapalan Z, Du WW, Deng Z, Yang BB . A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions. PLoS One 2009; 4: e4527.

    Article  Google Scholar 

  28. Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB . Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res 2011; 39: 3026–3041.

    Article  CAS  Google Scholar 

  29. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147: 358–369.

    Article  CAS  Google Scholar 

  30. Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P . Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 2011; 147: 1080–1091.

    Article  CAS  Google Scholar 

  31. Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB . The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2014; 5: 2914.

    Article  Google Scholar 

  32. Tay Y, Rinn J, Pandolfi PP . The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505: 344–352.

    Article  CAS  Google Scholar 

  33. Jeck WR, Sharpless NE . Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32: 453–461.

    Article  CAS  Google Scholar 

  34. AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T . Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 2014; 111: 14542–14547.

    Article  CAS  Google Scholar 

  35. Haimovich G, Medina DA, Causse SZ, Garber M, Millan-Zambrano G, Barkai O et al. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 2013; 153: 1000–1011.

    Article  CAS  Google Scholar 

  36. Wilusz JE, Sharp PA . Molecular biology. A circuitous route to noncoding RNA. Science 2013; 340: 440–441.

    Article  CAS  Google Scholar 

  37. Hentze MW, Preiss T . Circular RNAs: splicing's enigma variations. EMBO J 2013; 32: 923–925.

    Article  CAS  Google Scholar 

  38. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333–338.

    Article  CAS  Google Scholar 

  39. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73: 1019–1030.

    Article  CAS  Google Scholar 

  40. Du WW, Yang W, Fang L, Xuan J, Li H, Khorshidi A et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis 2014; 5: e1355.

    Article  CAS  Google Scholar 

  41. Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 2014; 5: 3773.

    Article  Google Scholar 

  42. Haeusler RA, Hartil K, Vaitheesvaran B, Arrieta-Cruz I, Knight CM, Cook JR et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 2014; 5: 5190.

    Article  CAS  Google Scholar 

  43. Keniry M, Pires MM, Mense S, Lefebvre C, Gan B, Justiano K et al. Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev 2013; 27: 916–927.

    Article  CAS  Google Scholar 

  44. Kloet DE, Burgering BM . The PKB/FOXO switch in aging and cancer. Biochim Biophys Acta 2011; 1813: 1926–1937.

    Article  CAS  Google Scholar 

  45. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK . Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 2010; 5: e15288.

    Article  CAS  Google Scholar 

  46. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B . Mis-splicing yields circular RNA molecules. FASEB J 1993; 7: 155–160.

    Article  CAS  Google Scholar 

  47. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19: 141–157.

    Article  CAS  Google Scholar 

  48. Yang BL, Cao L, Kiani C, Lee V, Zhang Y, Adams ME et al. Tandem repeats are involved in G1 domain inhibition of versican expression and secretion and the G3 domain enhances glycosaminoglycan modification and product secretion via the complement-binding protein-like motif. J Biol Chem 2000; 275: 21255–21261.

    Article  CAS  Google Scholar 

  49. Cao L, Yao Y, Lee V, Kiani C, Spaner D, Lin Z et al. Epidermal growth factor induces cell cycle arrest and apoptosis of squamous carcinoma cells through reduction of cell adhesion. J Cell Biochem 2000; 77: 569–583.

    Article  CAS  Google Scholar 

  50. LaPierre DP, Lee DY, Li SZ, Xie YZ, Zhong L, Sheng W et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res 2007; 67: 4742–4750.

    Article  CAS  Google Scholar 

  51. Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res 2013; 41: 9688–9704.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC; 227937–2012) to BBY, who is the recipient of a Career Investigator Award (CI 7418) from the Heart and Stroke Foundation of Ontario. WY is supported by a Graduate Scholarship from Canadian Institutes of Health Research. WWD is supported by a Postdoctoral Fellowship from the Breast Cancer Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A J Yee or B B Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Du, W., Li, X. et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35, 3919–3931 (2016). https://doi.org/10.1038/onc.2015.460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.460

This article is cited by

Search

Quick links