Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics

Subjects

Abstract

Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lendahl U, Zimmerman LB, McKay RDG. CNS . stem cells express a new class of intermediate filament protein. Cell 1990; 60: 585–595.

    Article  CAS  PubMed  Google Scholar 

  2. Gilyarov AV . Nestin in central nervous system cells. Neurosci Behav Phys 2008; 38: 165–169.

    Article  CAS  Google Scholar 

  3. Frisén J, Johansson CB, Török C, Risling M, Lendahl U . Rapid widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 1995; 131: 453–464.

    Article  PubMed  Google Scholar 

  4. Yang XH, Wu QL, Yu XB, Xu CX, Ma BF, Zhang XM et al. Nestin expression in different tumours and its relevance to malignant grade. J Clin Pathol 2008; 61: 467–473.

    Article  CAS  PubMed  Google Scholar 

  5. Dahlstrand J, Collins VP, Lendahl U . Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 1992; 52: 5334–5341.

    CAS  PubMed  Google Scholar 

  6. Li P, Du F, Yuelling LW, Lin T, Muradimova RE, Tricarico R et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci 2013; 16: 1737–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T . Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 2014; 11: 512–523.

    Article  Google Scholar 

  8. Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL, Chen YW et al. Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. Mol Cancer Res 2013; 11: 768–779.

    Article  CAS  PubMed  Google Scholar 

  9. Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI et al. Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 2007; 67: 9199–9206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubin BP, Heinrich MC, Corless CL . Gastrointestinal stromal tumour. Lancet 2007; 369: 1731–1741.

    Article  CAS  PubMed  Google Scholar 

  11. Vanderwinden J-M, Gillard K, De Laet M-H, Messam CA, Schiffmann SN . Distribution of the intermediate filament nestin in the muscularis propria of the human gastrointestinal tract. Cell Tissue Res 2002; 309: 261–268.

    Article  CAS  PubMed  Google Scholar 

  12. Toivola DM, Strnad P, Habtezion A, Omary MB . Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20: 79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verstraeten VL, Caputo S, Van Steensel MA, Duband‐Goulet I, Zinn‐Justin S, Kamps M et al. The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 2009; 13: 959–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malhas AN, Lee CF, Vaux DJ . Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 2009; 184: 45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tao G-Z, Zhou Q, Strnad P, Salemi MR, Lee YM, Omary MB . Human Ran cysteine 112 oxidation by pervanadate regulates its binding to keratins. J Biol Chem 2005; 280: 12162–12167.

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y-L, Wu C-M, Shi G-Y, GC-C Wu, Lee H, Jiang M-J et al. Nestin serves as a prosurvival determinant that is linked to the cytoprotective effect of epidermal growth factor in rat vascular smooth muscle cells. J Biochem 2009; 146: 307–315.

    Article  CAS  PubMed  Google Scholar 

  17. Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 2008; 135: 2140 e2121–2128.

    Article  Google Scholar 

  18. Martindale JL, Holbrook NJ . Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192: 1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Tsujimura T, Makiishi-Shimobayashi C, Lundkvist J, Lendahl U, Nakasho K, Sugihara A et al. Expression of the intermediate filament nestin in gastrointestinal stromal tumors and interstitial cells of Cajal. Am J Pathol 2001; 158: 817–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI et al. Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Brit J Cancer 2007; 96: 986–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S et al. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 2011; 30: 457–470.

    Article  CAS  PubMed  Google Scholar 

  22. D'Autréaux B, Toledano MB . ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8: 813–824.

    Article  PubMed  Google Scholar 

  23. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Meta 2011; 14: 537–544.

    Article  CAS  Google Scholar 

  24. Wang Y, DuBois JL, Hedman B, Hodgson KO, Stack TD . Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. Science 1998; 279: 537–540.

    Article  CAS  PubMed  Google Scholar 

  25. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011; 8: 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holmstrom KM, Finkel T . Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15: 411–421.

    Article  CAS  PubMed  Google Scholar 

  27. De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP . Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005; 15: 678–683.

    Article  CAS  PubMed  Google Scholar 

  28. Koopman WJ, Visch H-J, Verkaart S, van den Heuvel LW, Smeitink JA, Willems PH . Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol-Cell Physiol 2005; 289: C881–C890.

    Article  CAS  PubMed  Google Scholar 

  29. Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE . A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J 2006; 25: 4808–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karbowski M, Youle R . Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003; 10: 870–880.

    Article  CAS  PubMed  Google Scholar 

  31. Yu T, Robotham JL, Yoon Y . Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006; 103: 2653–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol (Baltimore, Md) 2013; 27: 1706–1723.

    Article  CAS  Google Scholar 

  33. Anesti V, Scorrano L . The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 2006; 1757: 692–699.

    Article  CAS  PubMed  Google Scholar 

  34. Toivola DM, Tao G-Z, Habtezion A, Liao J, Omary MB . Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 2005; 15: 608–617.

    Article  CAS  PubMed  Google Scholar 

  35. Chappell NP, Teng PN, Hood BL, Wang G, Darcy KM, Hamilton CA et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer. J Proteome Res 2012; 11: 4605–4614.

    Article  CAS  PubMed  Google Scholar 

  36. Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC . Vimentin supports mitochondrial morphology and organization. Biochem J 2008; 410: 141–146.

    Article  CAS  PubMed  Google Scholar 

  37. Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW et al. Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 2007; 120: 3999–4008.

    Article  CAS  PubMed  Google Scholar 

  38. Tao G-Z, Looi KS, Toivola DM, Strnad P, Zhou Q, Liao J et al. Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis. J Cell Sci 2009; 122: 3851–3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y . Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000; 150: 1283–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Winter L, Abrahamsberg C, Wiche G . Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol 2008; 181: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan DC . Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 2012; 46: 265–287.

    Article  CAS  PubMed  Google Scholar 

  42. Liesa M, Palacin M, Zorzano A . Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89: 799–845.

    Article  CAS  PubMed  Google Scholar 

  43. Wallace DC . Mitochondria and cancer. Nat Rev Cancer 2012; 12: 685–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Serasinghe Madhavika N, Wieder Shira Y, Renault Thibaud T, Elkholi R, Asciolla James J, Yao Jonathon L et al. Mitochondrial Division Is Requisite to RAS-Induced Transformation and Targeted by Oncogenic MAPK Pathway Inhibitors. Mol Cell 2015; 57: 521–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 2015; 57: 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447–464.

    Article  CAS  PubMed  Google Scholar 

  47. Weinberg SE, Chandel NS . Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015; 11: 9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sabharwal SS, Schumacker PT, Mitochondrial ROS . in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 2014; 14: 709–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang MH, Cai B, Tuo Y, Wang J, Zang ZJ, Tu Xa et al. Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res 2014; 24: 1466–1485.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen Z, Wang J, Cai L, Zhong B, Luo H, Hao Y et al. Role of the stem cell-associated intermediate filament nestin in malignant proliferation of non-small cell lung cancer. PLoS One 2014; 9: e85584.

    Article  PubMed  PubMed Central  Google Scholar 

  51. LeBleu VS, O’Connell JT, Herrera KNG, Wikman H, Pantel K, Haigis MC et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell biol 2014; 16: 992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng F, Ke Q, Chen F, Cai B, Gao Y, Ye C et al. Protecting against wayward human induced pluripotent stem cells with a suicide gene. Biomaterials 2012; 33: 3195–3204.

    Article  CAS  PubMed  Google Scholar 

  53. Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y et al. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 2013; 22: 2221–2233.

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Li W, Wang Y, Fan W, Li P, Lin W et al. Islet-1 overexpression in human mesenchymal stem cells promotes vascularization through monocyte chemoattractant protein-3. Stem Cells 2014; 32: 1843–1854.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CBA01302); the National Natural Science Foundation of China (81425016, 81270646, 31171398); the Natural Science Foundation of Guangdong Province (S2013030013305, 2015A030312013); the Key Scientific and Technological Projects of Guangdong Province (2014B020226002, 2015B020226004, 2014B020228003, 2007A032100003); Key Scientific and Technological Program of Guangzhou City (201400000003-3, 201508020262, 201300000089, 2010U1-E00551); Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2013).

Author contributions

JW, JC, YH, QK, BW, SW, YW, WL, and APX designed and performed experiments. XH analyzed results. JW, JC, YH, CL and APX assembled results and wrote the paper. TW, WS and WL provided tools, patient specimens and edited the manuscript. All authors participated in critical revision of the manuscript for important intellectual content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Xiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cai, J., Huang, Y. et al. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics. Oncogene 35, 3139–3150 (2016). https://doi.org/10.1038/onc.2015.370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.370

This article is cited by

Search

Quick links