Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors

Subjects

Abstract

The spinophilin (Spn, PPP1R9B) gene is located at 17q21.33, a region frequently associated with microsatellite instability and loss of heterozygosity, especially in breast tumors. Spn is a regulatory subunit of phosphatase1a (PP1), which targets the catalytic subunit to distinct subcellular locations. Spn downregulation reduces PPP1CA activity against the retinoblastoma protein, pRb, thereby maintaining higher levels of phosphorylated pRb. This effect contributes to an increase in the tumorigenic properties of cells in certain contexts. Here, we explored the mechanism of how Spn downregulation contributes to the malignant phenotype and poor prognosis in breast tumors and found an increase in the stemness phenotype. Analysis of human breast tumors showed that Spn mRNA and protein are reduced or lost in 15% of carcinomas, correlating with a worse prognosis, a more aggressive tumor phenotype and triple-negative tumors, whereas luminal tumors showed high Spn levels. Downregulation of Spn by shRNA increased the stemness properties along with the expression of stem-related genes (Sox2, KLF4, Nanog and OCT4), whereas ectopic overexpression of Spn cDNA reduced these properties. Breast tumor stem cells appeared to have low levels of Spn mRNA, and Spn loss correlated with increased stem-like cell appearance in breast tumors as indicated by an increase in CD44+/CD24- cells. A reduction of the levels of PPP1CA mimicked the cancer stem-like cell phenotype of Spn downregulation, suggesting that the mechanism of Spn involves PP1a. These increased cancer stem cell-like properties with reduced Spn might account for the malignant phenotype observed in Spn-loss tumors and may contribute to a worse patient prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allen PB, Ouimet CC, Greengard P . Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 1997; 94: 9956–9961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satoh A, Nakanishi H, Obaishi H, Wada M, Takahashi K, Satoh K et al. Neurabin-II/spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell-cell adhesion sites. J Biol Chem 1998; 273: 3470–3475.

    Article  CAS  PubMed  Google Scholar 

  3. Sarrouilhe D, di Tommaso A, Metaye T, Ladeveze V . Spinophilin: from partners to functions. Biochimie 2006; 88: 1099–1113.

    Article  CAS  PubMed  Google Scholar 

  4. Carnero A . Spinophilin: a new tumor suppressor at 17q21. Curr Mol Med 2012; 12: 528–535.

    Article  CAS  PubMed  Google Scholar 

  5. Vivo M, Calogero RA, Sansone F, Calabro V, Parisi T, Borrelli L et al. The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. J Biol Chem 2001; 276: 14161–14169.

    Article  CAS  PubMed  Google Scholar 

  6. Brady AE, Wang Q, Colbran RJ, Allen PB, Greengard P, Limbird LE . Spinophilin stabilizes cell surface expression of alpha 2B-adrenergic receptors. J Biol Chem 2003; 278: 32405–32412.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science 2004; 304: 1940–1944.

    Article  CAS  PubMed  Google Scholar 

  8. Kuntziger T, Landsverk HB, Collas P, Syljuasen RG . Protein phosphatase 1 regulators in DNA damage signaling. Cell Cycle 2011; 10: 1356–1362.

    Article  CAS  PubMed  Google Scholar 

  9. Allen PB, Zachariou V, Svenningsson P, Lepore AC, Centonze D, Costa C et al. Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 2006; 140: 897–911.

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh-Wilson LC, Allen PB, Watanabe T, Nairn AC, Greengard P . Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry 1999; 38: 4365–4373.

    Article  CAS  PubMed  Google Scholar 

  11. Porter DE, Steel CM, Cohen BB, Wallace MR, Carothers A, Chetty U et al. Genetic linkage analysis applied to unaffected women from families with breast cancer can discriminate high- from low-risk individuals. Br J Surg 1993; 80: 1381–1385.

    Article  CAS  PubMed  Google Scholar 

  12. Porter DE, Cohen BB, Wallace MR, Smyth E, Chetty U, Dixon JM et al. Breast cancer incidence, penetrance and survival in probable carriers of BRCA1 gene mutation in families linked to BRCA1 on chromosome 17q12-21. Br J Surg 1994; 81: 1512–1515.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen BB, Porter DE, Wallace MR, Carothers A, Steel CM . Linkage of a major breast cancer gene to chromosome 17q12-21: results from 15 Edinburgh families. Am J Hum Genet 1993; 52: 723–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tseng SL, Yu IC, Yue CT, Chang SF, Chang TM, Wu CW et al. Allelic loss at BRCA1, BRCA2, and adjacent loci in relation to TP53 abnormality in breast cancer. Genes Chromosomes Cancer 1997; 20: 377–382.

    Article  CAS  PubMed  Google Scholar 

  15. Smith SA, Easton DF, Ford D, Peto J, Anderson K, Averill D et al. Genetic heterogeneity and localization of a familial breast-ovarian cancer gene on chromosome 17q12-q21. Am J Hum Genet 1993; 52: 767–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Easton DF, Bishop DT, Ford D, Crockford GP . Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1993; 52: 678–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Abujiang P, Mori TJ, Takahashi T, Tanaka F, Kasyu I, Hitomi S et al. Loss of heterozygosity (LOH) at 17q and 14q in human lung cancers. Oncogene 1998; 17: 3029–3033.

    Article  CAS  PubMed  Google Scholar 

  18. Molina-Pinelo S, Ferrer I, Blanco-Aparicio C, Peregrino S, Pastor MD, Alvarez-Vega J et al. Down-regulation of spinophilin in lung tumours contributes to tumourigenesis. J Pathol 2011; 225: 73–82.

    Article  CAS  PubMed  Google Scholar 

  19. Aigelsreiter AM, Aigelsreiter A, Wehrschuetz M, Ress AL, Koller K, Salzwimmer M et al. Loss of the putative tumor suppressor protein spinophilin is associated with poor prognosis in head and neck cancer. Hum Pathol 2014; 45: 683–690.

    Article  CAS  PubMed  Google Scholar 

  20. Aigelsreiter A, Ress AL, Bettermann K, Schauer S, Koller K, Eisner F et al. Low expression of the putative tumour suppressor spinophilin is associated with higher proliferative activity and poor prognosis in patients with hepatocellular carcinoma. Br J Cancer 2013; 108: 1830–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Estevez-Garcia P, Lopez-Calderero I, Molina-Pinelo S, Munoz-Galvan S, Salinas A, Gomez-Izquierdo L et al. Spinophilin loss correlates with poor patient prognosis in advanced stages of colon carcinoma. Clin Cancer Res 2013; 19: 3925–3935.

    Article  CAS  PubMed  Google Scholar 

  22. Ouimet CC, Katona I, Allen P, Freund TF, Greengard P . Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines. J Comp Neurol 2004; 479: 374–388.

    Article  CAS  PubMed  Google Scholar 

  23. Berndt N . Protein dephosphorylation and the intracellular control of the cell number. Front Biosci 1999; 4: D22–D42.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrer I, Blanco-Aparicio C, Peregrina S, Canamero M, Fominaya J, Cecilia Y et al. Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle 2011; 10: 2751–2762.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrer I, Peregrino S, Canamero M, Cecilia Y, Blanco-Aparicio C, Carnero A . Spinophilin loss contributes to tumorigenesis in vivo. Cell Cycle 2011; 10: 1948–1955.

    Article  CAS  PubMed  Google Scholar 

  26. Galderisi U, Cipollaro M, Giordano A . The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 2006; 25: 5250–5256.

    Article  CAS  PubMed  Google Scholar 

  27. Santamaria D, Malumbres M . Tumor suppression by Spinophilin. Cell Cycle 2011; 10: 2831–2832.

    Article  CAS  PubMed  Google Scholar 

  28. Santra M, Santra S, Buller B, Santra K, Nallani A, Chopp M . Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci 2011; 102: 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  29. Santra M, Zhang X, Santra S, Jiang F, Chopp M . Ectopic doublecortin gene expression suppresses the malignant phenotype in glioblastoma cells. Cancer Res 2006; 66: 11726–11735.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mannello F . Understanding breast cancer stem cell heterogeneity: time to move on to a new research paradigm. BMC Med 2013; 11: 169.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mannello F, Ligi D . Resolving breast cancer heterogeneity by searching reliable protein cancer biomarkers in the breast fluid secretome. BMC Cancer 2013; 13: 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghebeh H, Sleiman GM, Manogaran PS, Al-Mazrou A, Barhoush E, Al-Mohanna FH et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer 2013; 13: 289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS . Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36: 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  37. Locke M, Heywood M, Fawell S, Mackenzie IC . Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 2005; 65: 8944–8950.

    Article  CAS  PubMed  Google Scholar 

  38. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228–14233.

    Article  CAS  PubMed  Google Scholar 

  39. Setoguchi T, Taga T, Kondo T . Cancer stem cells persist in many cancer cell lines. Cell Cycle 2004; 3: 414–415.

    Article  CAS  PubMed  Google Scholar 

  40. Resnicoff M, Medrano EE, Podhajcer OL, Bravo AI, Bover L, Mordoh J . Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer. Proc Natl Acad Sci USA 1987; 84: 7295–7299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barrandon Y, Green H . Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 1987; 84: 2302–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511: 246–250.

    Article  CAS  PubMed  Google Scholar 

  43. Siegle JM, Basin A, Sastre-Perona A, Yonekubo Y, Brown J, Sennett R et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun 2014; 5: 4511.

    Article  CAS  PubMed  Google Scholar 

  44. Castro ME, Ferrer I, Cascon A, Guijarro MV, Lleonart M, Cajal SR et al. PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 2008; 29: 491–499.

    Article  CAS  PubMed  Google Scholar 

  45. Ress AL, Stiegelbauer V, Schwarzenbacher D, Deutsch A, Perakis S, Ling H et al. Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer. Oncotarget 2014; 5: 8492–8502.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pinto CA, Widodo E, Waltham M, Thompson EW . Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Lett 2013; 341: 56–62.

    Article  CAS  PubMed  Google Scholar 

  47. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11: 259–273.

    Article  CAS  PubMed  Google Scholar 

  48. Chang CC . Recent translational research: stem cells as the roots of breast cancer. Breast Cancer Res 2006; 8: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tsukada M, Prokscha A, Oldekamp J, Eichele G . Identification of neurabin II as a novel doublecortin interacting protein. Mech Dev 2003; 120: 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  50. Bielas SL, Serneo FF, Chechlacz M, Deerinck TJ, Perkins GA, Allen PB et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 2007; 129: 579–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Querzoli P, Albonico G, di Iasio MG, Ferretti S, Rinaldi R, Cariello A et al. Biophenotypes and survival of BRCA1 and TP53 deleted breast cancer in young women. Breast Cancer Res Treat 2001; 66: 135–142.

    Article  CAS  PubMed  Google Scholar 

  52. Guijarro MV, Leal JF, Fominaya J, Blanco-Aparicio C, Alonso S, Lleonart M et al. MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis 2007; 28: 1646–1652.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AC lab was supported by grants from the Spanish Ministry of Economy and Competitivity, Plan Nacional de I+D+I 2008-2011, Plan Estatal de I+D+I 2013-2016, ISCIII (Fis: PI12/00137, PI15/00045, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-6844 and CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0135-2010 and PI-0306-2012). This work has been also possible with the help of the Plan Estatal de I+D+i 2013-2016, Grant PIE13/0004 co-funded by the ISCIII and FEDER funds. We thank the donors and the CNIO tumor bank and HUVR-IBiS Biobank (Andalusian Public Health System Biobank and ISCIII-Red de Biobancos PT13/0010/0056) for the human specimens used in this study. IF was funded by a Sara Borrel Fellowship (CD12/00596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Carnero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, I., Verdugo-Sivianes, E., Castilla, M. et al. Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene 35, 2777–2788 (2016). https://doi.org/10.1038/onc.2015.341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.341

This article is cited by

Search

Quick links