Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells

Abstract

Dysregulated microRNA (miRNA) mediate malignant phenotypes, including metabolic reprogramming. By performing an integrative analysis of miRNA and metabolome data for the NCI-60 cell line panel, we identified an miRNA cluster strongly associated with both c-Myc expression and global metabolic variation. Within this cluster the cancer-associated and cardioprotective miR-22 was shown to repress fatty acid synthesis and elongation in tumour cells by targeting ATP citrate lyase and fatty acid elongase 6, as well as impairing mitochondrial one-carbon metabolism by suppression of methylene tetrahydrofolate dehydrogenase/cyclohydrolase. Across several data sets, expression of these target genes were associated with poorer outcomes in breast cancer patients. Importantly, a beneficial effect of miR-22 on clinical outcomes in breast cancer was shown to depend on the expression levels of the identified target genes, demonstrating the relevance of miRNA/mRNA interactions to disease progression in vivo. Our systematic analysis establishes miR-22 as a novel regulator of tumour cell metabolism, a function that could contribute to the role of this miRNA in cellular differentiation and cancer development. Moreover, we provide a paradigmatic example of effect modification in outcome analysis as a consequence of miRNA-directed gene targeting, a phenomenon that could be exploited to improve patient prognosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Schulze A, Harris AL . How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364–373.

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 2012; 8: 839–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 2011; 477: 225–228.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  PubMed  Google Scholar 

  10. Volinia S, Croce CM . Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci USA 2013; 110: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci USA 2013; 110: 9845–9850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 2010; 12: 352–361.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012; 31: 1985–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 2012; 109: 8983–8988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trygg J, Wold S . O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. J Chemometr 2003; 17: 53–64.

    Article  CAS  Google Scholar 

  18. Bylesjo M, Eriksson D, Kusano M, Moritz T, Trygg J . Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J 2007; 52: 1181–1191.

    Article  PubMed  Google Scholar 

  19. Rantalainen M, Cloarec O, Beckonert O, Wilson ID, Jackson D, Tonge R et al. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J Proteome Res 2006; 5: 2642–2655.

    Article  CAS  PubMed  Google Scholar 

  20. Kirwan GM, Johansson E, Kleemann R, Verheij ER, Wheelock AM, Goto S et al. Building multivariate systems biology models. Anal Chem 2012; 84: 7064–7071.

    Article  CAS  PubMed  Google Scholar 

  21. National Cancer Institute. Molecular Target Data - NCI/NIH Developmental Therapeutics Program Data 2013, Available from https://wiki.nci.nih.gov/display/NCIDTPdata/Molecular+Target+Data.

  22. Sokilde R, Kaczkowski B, Podolska A, Cirera S, Gorodkin J, Moller S et al. Global microRNA analysis of the NCI-60 cancer cell panel. Mol Cancer Ther 2011; 10: 375–384.

    Article  CAS  PubMed  Google Scholar 

  23. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  24. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    CAS  PubMed  Google Scholar 

  25. Marzi MJ, Puggioni EM, Dall'Olio V, Bucci G, Bernard L, Bianchi F et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J Cell Biol 2012; 199: 77–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandey DP, Picard D . miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 2009; 29: 3783–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M et al. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 2011; 71: 4628–4639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013; 154: 311–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013; 13: 87–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A et al. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011; 193: 409–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 2010; 103: 1215–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013; 112: 1234–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiong J, Du Q, Liang Z . Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 2010; 29: 4980–4988.

    Article  CAS  PubMed  Google Scholar 

  34. Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24: 447–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaidi N, Swinnen JV, Smans K . ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 2012; 72: 3709–3714.

    Article  CAS  PubMed  Google Scholar 

  36. Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A et al. Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells. Int J Cancer 2013; 135: 37–47.

    Article  PubMed  Google Scholar 

  37. Guillou H, Zadravec D, Martin PG, Jacobsson A . The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 2010; 49: 186–199.

    Article  CAS  PubMed  Google Scholar 

  38. Kelleher JK, Masterson TM . Model equations for condensation biosynthesis using stable isotopes and radioisotopes. Am J Physiol 1992; 262: E118–E125.

    CAS  PubMed  Google Scholar 

  39. Lligona-Trulla L, Arduini A, Aldaghlas TA, Calvani M, Kelleher JK . Acetyl-L-carnitine flux to lipids in cells estimated using isotopomer spectral analysis. J Lipid Res 1997; 38: 1454–1462.

    CAS  PubMed  Google Scholar 

  40. Pike ST, Rajendra R, Artzt K, Appling DR . Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J Biol Chem 2010; 285: 4612–4620.

    Article  CAS  PubMed  Google Scholar 

  41. Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R et al. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 2011; 30: 1290–1301.

    Article  CAS  PubMed  Google Scholar 

  42. Kong LM, Liao CG, Zhang Y, Xu J, Li Y, Huang W et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res 2014; 74: 3764–3778.

    Article  CAS  PubMed  Google Scholar 

  43. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  PubMed Central  Google Scholar 

  44. Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 2011; 71: 4443–4453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvarez-Diaz S, Valle N, Ferrer-Mayorga G, Lombardia L, Herrera M, Dominguez O et al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet 2012; 21: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  46. Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW . Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 2012; 227: 1391–1398.

    Article  CAS  PubMed  Google Scholar 

  47. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 2014; 5: 3128.

    Article  PubMed  Google Scholar 

  48. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336: 1040–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD . Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510: 298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shin M, Bryant JD, Momb J, Appling DR . Mitochondrial MTHFD2L Is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem 2014; 289: 15507–15517.

    Article  CAS  PubMed  Google Scholar 

  51. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB . ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324: 1076–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doria ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C et al. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 2014; 28: 4247–4264.

    Article  CAS  PubMed  Google Scholar 

  53. Muir K, Hazim A, He Y, Peyressatre M, Kim DY, Song X et al. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res 2013; 73: 4722–4731.

    Article  CAS  PubMed  Google Scholar 

  54. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 2010; 463: 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gurha P, Abreu-Goodger C, Wang T, Ramirez MO, Drumond AL, van Dongen S et al. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 2012; 125: 2751–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gurha P, Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One 2013; 8: e75882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 2013; 4: e877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O et al. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 2013; 4: 48–63.

    Article  PubMed  Google Scholar 

  59. Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR . A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 2013; 41: 2239–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 2007; 104: 1777–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trygg J . O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemometr 2002; 16: 283–293.

    Article  CAS  Google Scholar 

  63. Stein SE . An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 1999; 10: 770–781.

    Article  CAS  Google Scholar 

  64. Behrends V, Tredwell GD, Bundy JG . A software complement to AMDIS for processing GC-MS metabolomic data. Anal Biochem 2011; 415: 206–208.

    Article  CAS  PubMed  Google Scholar 

  65. Millard P, Letisse F, Sokol S, Portais JC . IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 2012; 28: 1294–1296.

    Article  CAS  PubMed  Google Scholar 

  66. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB . Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Safe 2006; 91: 1175–1209.

    Article  Google Scholar 

  67. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  68. Robinson MD, Oshlack A . A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010; 11: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wilson CL, Miller CJ . Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 2005; 21: 3683–3685.

    Article  CAS  PubMed  Google Scholar 

  70. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  PubMed  Google Scholar 

  71. Therneau TM . A Package for Survival Analysis in S 2013, Available from: http://CRAN.R-project.org/package=survival.

  72. Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One 2012; 7: e42390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meiri E, Levy A, Benjamin H, Ben-David M, Cohen L, Dov A et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res 2010; 38: 6234–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 2010; 32: 828–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HK, CK, GT and JE acknowledge support by the European Community’s Seventh Framework Programme—Health (FP7/2007-2013) project DETECTIVE (grant agreement number 266838). HK and JE are also supported by Cancer Research UK programme grant A15115. HK and GV are supported by the EC FP7/2007-2013 project Euro-MOTOR (grant agreement number 259867). CHL is supported by a UK Biotechnology and Biological Sciences Research Council (BBSRC) PhD studentship (grant number BB/F529270/1 for the Institute of Chemical Biology (Imperial College London) Doctoral Training Centre). YP is supported by a Royal Thai Government Scholarship. TY is supported by a UK MRC PhD studentship (Imperial College London Faculty of Medicine Doctoral Training Award). AB is supported by the EC FP7/2013-2018 project HeCaTos (grant agreement number 602156). We also acknowledge valuable discussions with Dr Charlotte Bevan, Professor Charles Coombes, Dr Jake Bundy, Professor Nigel Gooderham and Dr Tim Ebbels.

Author contributions

CK and HK conceived the project. CK, GV and HK prepared and wrote the final manuscript and figures with support from other authors. CK, GV and JE conducted cell experiments to confirm miR-22 regulation of target genes. GV established the luciferase reporter assays. GT, JE and GV conducted 13C labelling experiments. GT established all GC-MS protocols and conducted the modelling of isotopomer distributions. CHL conducted supporting metabolomic analysis. EN conducted the PLS modelling. TY and AB carried out confirmatory protein analyses. YP conducted the bioinformatic analysis of all patient data sets. CK conducted all other bioinformatic analyses. HK managed the project. All authors made a significant practical and intellectual contribution to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C Keun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koufaris, C., Valbuena, G., Pomyen, Y. et al. Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene 35, 2766–2776 (2016). https://doi.org/10.1038/onc.2015.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.333

This article is cited by

Search

Quick links