Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Adaptive stress signaling in targeted cancer therapy resistance

Abstract

The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. Although substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumo r cell survival during treatment and the development of resistance. Here we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize or eliminate targeted therapy resistance, thereby unleashing the full potential of targeted therapies to transform many cancers from lethal to chronic or curable conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Weinstein IB . Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002; 297: 63–64.

    Article  CAS  PubMed  Google Scholar 

  2. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  3. Dhillon AS, Hagan S, Rath O, Kolch W . MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279–3290.

    Article  CAS  PubMed  Google Scholar 

  4. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–2388.

    Article  CAS  PubMed  Google Scholar 

  7. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13: 239–246.

    Article  CAS  PubMed  Google Scholar 

  8. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3327–3334.

    Article  CAS  PubMed  Google Scholar 

  9. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013; 368: 2385–2394.

    Article  CAS  PubMed  Google Scholar 

  10. Diaz Jr LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486: 537–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Bardelli A . Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov 2014; 4: 1269–8.

    Article  CAS  PubMed  Google Scholar 

  12. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lovly CM, Shaw AT . Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clinical Cancer Res 2014; 20: 2249–2256.

    Article  CAS  Google Scholar 

  14. Goltsov A, Langdon SP, Goltsov G, Harrison DJ, Bown J . Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations. Front Oncol 2014; 4: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garraway LA, Janne PA . Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov 2012; 2: 214–226.

    Article  CAS  PubMed  Google Scholar 

  16. Glickman MS, Sawyers CL . Converting cancer therapies into cures: lessons from infectious diseases. Cell 2012; 148: 1089–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352: 786–792.

    Article  CAS  PubMed  Google Scholar 

  18. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2: e73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Godin-Heymann N, Ulkus L, Brannigan BW, McDermott U, Lamb J, Maheswaran S et al. The T790M "gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol Cancer Ther 2008; 7: 874–879.

    Article  CAS  PubMed  Google Scholar 

  20. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013; 3: 658–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007; 104: 20932–20937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012; 44: 852–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3: 75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Watanabe S, Sone T, Matsui T, Yamamura K, Tani M, Okazaki A et al. Transformation to small-cell lung cancer following treatment with EGFR tyrosine kinase inhibitors in a patient with lung adenocarcinoma. Lung Cancer 2013; 82: 370–372.

    Article  PubMed  Google Scholar 

  26. Aparicio A, Logothetis CJ, Maity SN . Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov 2011; 1: 466–468.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  28. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  29. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang PH, Xu AM, White FM . Oncogenic EGFR signaling networks in glioma. Sci Signal 2009; 2: re6.

    PubMed  Google Scholar 

  31. Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I et al. De-repression of PDGFRbeta transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov 2013; 3: 534–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J . Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 2014; 26: 207–221.

    Article  CAS  PubMed  Google Scholar 

  33. Ishiguro Y, Ishiguro H, Miyamoto H . Epidermal growth factor receptor tyrosine kinase inhibition up-regulates interleukin-6 in cancer cells and induces subsequent development of interstitial pneumonia. Oncotarget 2013; 4: 550–559.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Haber DA, Gray NS, Baselga J . The evolving war on cancer. Cell 2011; 145: 19–24.

    Article  CAS  PubMed  Google Scholar 

  35. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009; 28: 803–814.

    Article  CAS  PubMed  Google Scholar 

  36. Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA 2011; 108: 5021–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D, Paragas V et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci Signal 2013; 6: ra68.

    Article  PubMed  Google Scholar 

  38. McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 2012; 11: 582–593.

    Article  CAS  PubMed  Google Scholar 

  39. Wetterskog D, Shiu KK, Chong I, Meijer T, Mackay A, Lambros M et al. Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene 2014; 33: 966–976.

    Article  CAS  PubMed  Google Scholar 

  40. Bailey ST, Miron PL, Choi YJ, Kochupurakkal B, Maulik G, Rodig SJ et al. NF-kappaB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth. Mol Cancer Res 2014; 12: 408–420.

    Article  CAS  PubMed  Google Scholar 

  41. Chen YJ, Yeh MH, Yu MC, Wei YL, Chen WS, Chen JY et al. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors. Breast Cancer Res 2013; 15: R108.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155: 1309–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA et al. The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 2008; 9: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miller TW, Balko JM, Arteaga CL . Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 2011; 29: 4452–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 2011; 71: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baker NM, Der CJ . Cancer: drug for an 'undruggable' protein. Nature 2013; 497: 577–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM . K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503: 548–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M et al. Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 2013; 497: 638–642.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Adjei AA . The clinical development of MEK inhibitors. Nat Rev Clin Oncol 2014; 11: 385–400.

    Article  CAS  PubMed  Google Scholar 

  51. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483: 100–103.

    Article  CAS  PubMed  Google Scholar 

  52. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2: 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508: 118–122.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Huang Y, Jiang J, Frank SJ . ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell Signal 2008; 20: 2145–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res 2012; 72: 3228–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flanigan SA, Pitts TM, Newton TP, Kulikowski GN, Tan AC, McManus MC et al. Overcoming IGF1R/IR resistance through inhibition of MEK signaling in colorectal cancer models. Clin Cancer Res 2013; 19: 6219–6229.

    Article  CAS  PubMed  Google Scholar 

  57. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012; 149: 307–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun C, Hobor S, Bertotti A, Zecchin D, Huang S, Galimi F et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep 2014; 7: 86–93.

    Article  CAS  PubMed  Google Scholar 

  59. Lito P, Saborowski A, Yue J, Solomon M, Joseph E, Gadal S et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 2014; 25: 697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A et al. The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 2012; 942: 3–37.

    Article  CAS  PubMed  Google Scholar 

  61. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  62. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E . Energy metabolism in tumor cells. FEBS J 2007; 274: 1393–1418.

    Article  CAS  PubMed  Google Scholar 

  63. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013; 498: 109–112.

    Article  CAS  PubMed  Google Scholar 

  64. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 2000; 14: 783–794.

    Article  CAS  PubMed  Google Scholar 

  67. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4: 1533–1540.

    Article  CAS  PubMed  Google Scholar 

  69. Chandarlapaty S . Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov 2012; 2: 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19: 58–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ducker GS, Atreya CE, Simko JP, Hom YK, Matli MR, Benes CH et al. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2014; 33: 1590–1600.

    Article  CAS  PubMed  Google Scholar 

  72. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21: 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 2011; 1: 248–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30: 2547–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011; 30: 2307–2318.

    Article  CAS  PubMed  Google Scholar 

  77. Saez-Ayala M, Montenegro MF, Sanchez-Del-Campo L, Fernandez-Perez MP, Chazarra S, Freter R et al. Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell 2013; 24: 105–119.

    Article  CAS  PubMed  Google Scholar 

  78. Duru N, Candas D, Jiang G, Li JJ . Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society. J Cancer Res Clin Oncol 2014; 140: 1–14.

    Article  CAS  PubMed  Google Scholar 

  79. Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D et al. HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 2012; 18: 6634–6647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY et al. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 2002; 62: 1213–1221.

    CAS  PubMed  Google Scholar 

  81. Ahmed KM, Fan M, Nantajit D, Cao N, Li JJ . Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene 2008; 27: 6738–6748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Bivona lab for critical review and thoughtful comments on the manuscript. We are grateful to the following funding sources: NIH Director’s New Innovator Award, NIH R01 CA169338, Howard Hughes Medical Institute, Doris Duke Charitable Foundation, Searle Scholars Program, California Institute for Quantitative Biosciences, QB3@UCSF (to TGB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T G Bivona.

Ethics declarations

Competing interests

TGB is a consultant to Driver Group and to Novartis, Clovis Oncology, Cleave Biosciences, and a recipient of a research grant from Servier. EP declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarentzos, E., Bivona, T. Adaptive stress signaling in targeted cancer therapy resistance. Oncogene 34, 5599–5606 (2015). https://doi.org/10.1038/onc.2015.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.26

This article is cited by

Search

Quick links