Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development

Subjects

An Erratum to this article was published on 03 September 2015

This article has been updated

Abstract

Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects—latency and tumor load—were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. Our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

  • 03 September 2015

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue.

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  3. Hajra KM, Chen DY, Fearon ER . The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  4. Barrallo-Gimeno A, Nieto MA . The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  5. Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 1999; 4: 343–352.

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A et al. SLUG in cancer development. Oncogene 2005; 24: 3073–3082.

    Article  CAS  PubMed  Google Scholar 

  7. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005; 123: 641–653.

    Article  CAS  PubMed  Google Scholar 

  8. Nieto MA . The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  9. Nassour M, Idoux-Gillet Y, Selmi A, Come C, Faraldo ML, Deugnier MA et al. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One 2012; 7: e53498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cobaleda C, Perez-Caro M, Vicente-Duenas C, Sanchez-Garcia I . Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet 2007; 41: 41–61.

    Article  CAS  PubMed  Google Scholar 

  12. Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 2008; 214: 25–37.

    Article  CAS  PubMed  Google Scholar 

  13. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C et al. Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 2006; 12: 5395–5402.

    Article  CAS  PubMed  Google Scholar 

  16. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T . The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998; 198: 277–285.

    Article  CAS  PubMed  Google Scholar 

  19. Rowse GJ, Ritland SR, Gendler SJ . Genetic modulation of neu proto-oncogene-induced mammary tumorigenesis. Cancer Res 1998; 58: 2675–2679.

    CAS  PubMed  Google Scholar 

  20. Ullrich RL, Bowles ND, Satterfield LC, Davis CM . Strain-dependent susceptibility to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation. Radiat Res 1996; 146: 353–355.

    Article  CAS  PubMed  Google Scholar 

  21. Davie SA, Maglione JE, Manner CK, Young D, Cardiff RD, MacLeod CL et al. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res 2007; 16: 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 1997; 17: 280–284.

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Garcia I . The crossroads of oncogenesis and metastasis. N Engl J Med 2009; 360: 297–299.

    Article  CAS  PubMed  Google Scholar 

  24. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 2007; 67: 8671–8681.

    Article  CAS  PubMed  Google Scholar 

  25. Gunzburg WH, Salmons B . Factors controlling the expression of mouse mammary tumour virus. Biochem J 1992; 283: 625–632.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Landis MD, Seachrist DD, Abdul-Karim FW, Keri RA . Sustained trophism of the mammary gland is sufficient to accelerate and synchronize development of ErbB2/Neu-induced tumors. Oncogene 2006; 25: 3325–3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castellanos-Martín A, Castillo-Lluva S, Sáez-Freire Mdel M, Blanco-Gómez A, Hontecillas-Prieto L, Patino-Alonso C et al. Unraveling heterogeneous susceptibility and the evolution of breast cancer by a systems biology approach. Genome Biol 2015; 16: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Knight CH, Peaker M . Development of the mammary gland. J Reprod Fertil 1982; 65: 521–536.

    Article  CAS  PubMed  Google Scholar 

  29. Mukherjee S, Louie SG, Campbell M, Esserman L, Shyamala G . Ductal growth is impeded in mammary glands of C-neu transgenic mice. Oncogene 2000; 19: 5982–5987.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Losada J, Balmain A . Stem-cell hierarchy in skin cancer. Nat Rev Cancer 2003; 3: 434–443.

    Article  CAS  PubMed  Google Scholar 

  31. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  32. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S et al. Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep 2014; 2: 633–647.

    Article  CAS  Google Scholar 

  35. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  36. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA . Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245: 42–56.

    Article  CAS  PubMed  Google Scholar 

  37. Deugnier MA, Faraldo MM, Teuliere J, Thiery JP, Medina D, Glukhova MA . Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev Biol 2006; 293: 414–425.

    Article  CAS  PubMed  Google Scholar 

  38. Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene 2012; 31: 2614–2626.

    Article  CAS  PubMed  Google Scholar 

  39. Little JL, Serzhanova V, Izumchenko E, Egleston BL, Parise E, Klein-Szanto AJ et al. A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice. Oncogene 2014; 33: 411–420.

    Article  CAS  PubMed  Google Scholar 

  40. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, Avril S et al. Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res 2012; 14: R134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 2014; 16: 941–947.

    Article  Google Scholar 

  42. Watson CJ, Kreuzaler PA . Remodeling mechanisms of the mammary gland during involution. Int J Dev Biol 2011; 55: 757–762.

    Article  PubMed  Google Scholar 

  43. Cardiff RD, Wellings SR . The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 1999; 4: 105–122.

    Article  CAS  PubMed  Google Scholar 

  44. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999; 13: 2604–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwertfeger KL, Richert MM, Anderson SM . Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 2001; 15: 867–881.

    Article  CAS  PubMed  Google Scholar 

  46. Abell K, Bilancio A, Clarkson RW, Tiffen PG, Altaparmakov AI, Burdon TG et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol 2005; 7: 392–398.

    Article  CAS  PubMed  Google Scholar 

  47. Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD . EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 2001; 19: 1155–1160.

    CAS  PubMed  Google Scholar 

  48. Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 2006; 12: 20–28.

    Article  CAS  PubMed  Google Scholar 

  49. Humphreys RC, Rosen JM . Stably transfected HC11 cells provide an in vitro and in vivo model system for studying Wnt gene function. Cell Growth Differ 1997; 8: 839–849.

    CAS  PubMed  Google Scholar 

  50. Hutchinson JN, Jin J, Cardiff RD, Woodgett JR, Muller WJ . Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res 2004; 64: 3171–3178.

    Article  CAS  PubMed  Google Scholar 

  51. Dillon RL, Muller WJ . Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 2010; 70: 4260–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villarejo A, Molina-Ortiz P, Montenegro Y, Moreno-Bueno G, Morales S, Santos V et al. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors. Carcinogenesis 2015; 36: 585–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155: 1639–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carpenter RL, Paw I, Dewhirst MW, Lo HW . Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene 2014; 34: 546–557.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hudson LG, Choi C, Newkirk KM, Parkhani J, Cooper KL, Lu P et al. Ultraviolet radiation stimulates expression of Snail family transcription factors in keratinocytes. Mol Carcinog 2007; 46: 257–268.

    Article  CAS  PubMed  Google Scholar 

  56. Mittal MK, Singh K, Misra S, Chaudhuri G . SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. J Biol Chem 2011; 286: 469–479.

    Article  CAS  PubMed  Google Scholar 

  57. Bowe DB, Kenney NJ, Adereth Y, Maroulakou IG . Suppression of Neu-induced mammary tumor growth in cyclin D1 deficient mice is compensated for by cyclin E. Oncogene 2002; 21: 291–298.

    Article  CAS  PubMed  Google Scholar 

  58. Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck LR et al. ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. Mol Cell Biol 2002; 22: 2204–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Duuren BL, Sivak A, Katz C, Seidman I, Melchionne S . The effect of aging and interval between primary and secondary treatment in two-stage carcinogenesis on mouse skin. Cancer Res 1975; 35: 502–505.

    CAS  PubMed  Google Scholar 

  60. Manzanares M, Locascio A, Nieto MA . The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends Genet 2001; 17: 178–181.

    Article  CAS  PubMed  Google Scholar 

  61. Hinohara K, Kobayashi S, Kanauchi H, Shimizu S, Nishioka K, Tsuji E et al. ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci USA 2012; 109: 6584–6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang W, Tan W, Wu X, Poustovoitov M, Strasner A, Li W et al. A NIK-IKKalpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 2013; 23: 647–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao Y, Luo JL, Karin M . IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA 2007; 104: 15852–15857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C et al. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 2010; 17: 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Radisky DC, Hartmann LC . Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia 2009; 14: 181–191.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lazar H, Baltzer A, Gimmi C, Marti A, Jaggi R . Over-expression of erbB-2/neu is paralleled by inhibition of mouse-mammary-epithelial-cell differentiation and developmental apoptosis. Int J Cancer 2000; 85: 578–583.

    Article  CAS  PubMed  Google Scholar 

  68. Wang G, Yang X, Li C, Cao X, Luo X, Hu J . PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. Mol Cancer Ther 2014; 13: 1837–1847.

    Article  CAS  PubMed  Google Scholar 

  69. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 2004; 101: 10380–10385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004; 101: 4966–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shaw FL, Harrison H, Spence K, Ablett MP, Simoes BM, Farnie G et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia 2012; 17: 111–117.

    Article  PubMed  Google Scholar 

  72. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JP-L was partially supported by FEDER and MICINN (PLE2009-119, SAF2014-56989-R), Instituto de Salud Carlos III (PI07/0057, PI10/00328, PIE14/00066), Junta de Castilla y León (SAN673/SA26/08, SAN126/SA66/09, SA078A09, CSI034U13), the ‘Fundación Eugenio Rodríguez Pascual’, the ‘Fundación Inbiomed’ (Instituto Oncológico Obra Social de la Caja Guipozcoa-San Sebastian, Kutxa) and the ‘Fundación Sandra Ibarra de Solidaridad frente al Cáncer’. AC-M was supported by FIS (PI07/0057) and MICINN (PLE2009-119). SC-L was funded by a JAEdoc Fellowship (CSIC)/FSE. MMS-F and AB-G are funded by fellowships from the Junta de Castilla y Leon. J-HM was supported by the National Institutes of Health, a National Cancer Institute Grant (R01 CA116481) and the Low-Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy (DE-AC02-05CH11231). We thank Dr Montoliú for HC11 cells, Dr García Macías and the Comparative Pathology Core Facility of the ‘Centro de Investigación del Cáncer (CIC) de la Universidad de Salamanca’ for Pathology support, María Luz Hernández Mulas and Isabel Ramos for technical assistance, Dr Sánchez-García and Dr Martin-Zanca for useful comments along this project, Dr Balmain and Dr Lazo for comments about the manuscript and Nicholas Skinner for his useful help in English editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Castellanos-Martín or J Pérez-Losada.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Lluva, S., Hontecillas-Prieto, L., Blanco-Gómez, A. et al. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene 34, 4777–4790 (2015). https://doi.org/10.1038/onc.2015.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.224

Search

Quick links