Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression

Abstract

The CCCTC-binding factor (CTCF)/cohesin complex regulates gene transcription via high-order chromatin organization of the genome. De novo methylation of CpG islands in the promoter region is an epigenetic hallmark of gene silencing in cancer. Although the CTCF/cohesin complex preferentially targets hypomethylated DNA, it remains unclear whether the CTCF/cohesin-mediated high-order chromatin structure is affected by DNA methylation during tumorigenesis. We found that DNA methylation downregulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), which is an inducible, rate-limiting enzyme for prostaglandin synthesis, by disrupting CTCF/cohesin-mediated chromatin looping. We show that the CTCF/cohesin complex is enriched near a CpG island associated with PTGS2 and that the PTGS2 locus forms chromatin loops through methylation-sensitive binding of the CTCF/cohesin complex. DNA methylation abolishes the association of the CTCF/cohesin complex with the PTGS2 CpG island. Disruption of chromatin looping by DNA methylation abrogates the enrichment of transcriptional components, such as positive elongation factor b, at the transcriptional start site of the PTGS2 locus. These alterations result in the downregulation of PTGS2. Our results provide evidence that CTCF/cohesin-mediated chromatin looping of the PTGS2 locus is dynamically influenced by the DNA methylation status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 2013; 501: 227–231.

    Article  CAS  PubMed  Google Scholar 

  2. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013; 502: 59–64.

    Article  CAS  PubMed  Google Scholar 

  3. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 2013; 153: 1281–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 2010; 42: 53–61.

    Article  CAS  PubMed  Google Scholar 

  5. Ong CT, Corces VG . CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15: 234–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krivega I, Dean A . Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev 2012; 22: 79–85.

    Article  CAS  PubMed  Google Scholar 

  7. DeMare LE, Leng J, Cotney J, Reilly SK, Yin J, Sarro R et al. The genomic landscape of cohesin-associated chromatin interactions. Genome Res 2013; 23: 1224–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008; 132: 422–433.

    Article  CAS  PubMed  Google Scholar 

  9. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS et al. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 2008; 105: 8309–8314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dorsett D, Strom L . The ancient and evolving roles of cohesin in gene expression and DNA repair. Curr Biol 2012; 22: R240–R250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A et al. Genome-wide control of RNA polymerase II activity by cohesin. PLoS Genet 2013; 9: e1003382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seitan V, Faure A, Zhan Y, McCord R, Lajoie B, Ing-Simmons E et al. Cohesin-based chromatin interactions enable regulated gene expression within pre-existing architectural compartments. Genome Res 2013; 23: 2066–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 2013; 154: 801–813.

    Article  CAS  PubMed  Google Scholar 

  14. Baylin SB, Jones PA . A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011; 11: 726–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Paredes M, Esteller M . Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17: 330–339.

    Article  CAS  PubMed  Google Scholar 

  16. Jin B, Robertson KD . DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 2013; 754: 3–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bell AC, Felsenfeld G . Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000; 405: 482–485.

    Article  CAS  PubMed  Google Scholar 

  18. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 2000; 10: 853–856.

    Article  CAS  PubMed  Google Scholar 

  19. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011; 480: 490–495.

    CAS  PubMed  Google Scholar 

  20. Batlle-Lopez A, Cortiguera MG, Rosa-Garrido M, Blanco R, Del Cerro E, Torrano V et al. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus. Oncogene 2013; 34: 246–256.

    Article  PubMed  Google Scholar 

  21. Chang J, Zhang B, Heath H, Galjart N, Wang X, Milbrandt J . Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc Natl Acad Sci USA 2010; 107: 21836–21841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lai AY, Fatemi M, Dhasarathy A, Malone C, Sobol SE, Geigerman C et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 2010; 207: 1939–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez C, Borgel J, Court F, Cathala G, Forne T, Piette J . CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun 2010; 392: 129–134.

    Article  CAS  PubMed  Google Scholar 

  24. Wang D, Dubois RN . Eicosanoids and cancer. Nat Rev Cancer 2010; 10: 181–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song SH, Jong HS, Choi HH, Inoue H, Tanabe T, Kim NK et al. Transcriptional silencing of Cyclooxygenase-2 by hyper-methylation of the 5' CpG island in human gastric carcinoma cells. Cancer Res 2001; 61: 4628–4635.

    CAS  PubMed  Google Scholar 

  26. Toyota M, Shen L, Ohe-Toyota M, Hamilton SR, Sinicrope FA, Issa JP . Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res 2000; 60: 4044–4048.

    CAS  PubMed  Google Scholar 

  27. de Maat MF, van de Velde CJ, Umetani N, de Heer P, Putter H, van Hoesel AQ et al. Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer. J Clin Oncol 2007; 25: 4887–4894.

    Article  CAS  PubMed  Google Scholar 

  28. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39: 311–318.

    Article  CAS  PubMed  Google Scholar 

  29. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 2009; 460: 410–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou C, Dale R, Dean A . Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA 2010; 107: 3651–3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murrell A, Heeson S, Reik W . Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 2004; 36: 889–893.

    Article  CAS  PubMed  Google Scholar 

  32. Dekker J, Rippe K, Dekker M, Kleckner N . Capturing chromosome conformation. Science 2002; 295: 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  33. Yun J, Song SH, Park J, Kim HP, Yoon YK, Lee KH et al. Gene silencing of EREG mediated by DNA methylation and histone modification in human gastric cancers. Lab Invest 2012; 92: 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  34. Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ, Pang L . A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J 2014; 28: 3183–3196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012; 22: 837–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W et al. Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 2008; 68: 5753–5759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nitzsche A, Paszkowski-Rogacz M, Matarese F, Janssen-Megens EM, Hubner NC, Schulz H et al. RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity. PloS One 2011; 6: e19470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilroy DW, Saunders MA, Sansores-Garcia L, Matijevic-Aleksic N, Wu KK . Cell cycle-dependent expression of cyclooxygenase-2 in human fibroblasts. FASEB J 2001; 15: 288–290.

    Article  CAS  PubMed  Google Scholar 

  39. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008; 451: 796–801.

    Article  CAS  PubMed  Google Scholar 

  40. Egloff S, Dienstbier M, Murphy S . Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28: 333–341.

    Article  CAS  PubMed  Google Scholar 

  41. Rhodes JM, McEwan M, Horsfield JA . Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol Cancer Res 2011; 9: 1587–1607.

    Article  CAS  PubMed  Google Scholar 

  42. Rizzo MT . Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2011; 412: 671–687.

    Article  CAS  PubMed  Google Scholar 

  43. Song SH, Hou C, Dean A . A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 2007; 28: 810–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gomes NP, Espinosa JM . Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev 2010; 24: 1022–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W . Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 2002; 10: 1453–1465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of our group for their helpful advice. This research was supported by a grant from the National R&D Program for Cancer Control (MOHW, 0720540), the Basic Science Research Program (MOE, NRF-2011-0021123), the Mid-career Researcher Program (MSIP, NRF-2013R1A2A2A01009297) and the Korea Health Technology R&D Project (MOHW, HI14C1277), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Y Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Song, S., Yun, J. et al. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression. Oncogene 34, 5677–5684 (2015). https://doi.org/10.1038/onc.2015.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.17

This article is cited by

Search

Quick links