Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells

Abstract

The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and ‘community effects’ in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    CAS  PubMed  Google Scholar 

  2. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D . Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2: 326–332.

    CAS  PubMed  Google Scholar 

  3. Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008; 5: e54.

    PubMed  PubMed Central  Google Scholar 

  4. Lin JH, Walter P, Yen TS . Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 2008; 3: 399–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337: 1678–1684.

    CAS  PubMed  Google Scholar 

  6. Schroder M, Kaufman RJ . ER stress and the unfolded protein response. Mutat Res 2005; 569: 29–63.

    PubMed  Google Scholar 

  7. Hollien J, Weissman JS . Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313: 104–107.

    CAS  PubMed  Google Scholar 

  8. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 2007; 13: 365–376.

    CAS  PubMed  Google Scholar 

  9. Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.

    CAS  PubMed  Google Scholar 

  10. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    CAS  PubMed  Google Scholar 

  11. Lee AS . Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 2014; 14: 263–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 2000; 59: 15–26.

    CAS  PubMed  Google Scholar 

  13. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Yoshimastu T et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer 2005; 49: 55–62.

    PubMed  Google Scholar 

  14. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 2003; 38: 605–614.

    CAS  PubMed  Google Scholar 

  15. Xing X, Lai M, Wang Y, Xu E, Huang Q . Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta 2006; 364: 308–315.

    CAS  PubMed  Google Scholar 

  16. Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 2007; 38: 1547–1552.

    CAS  PubMed  Google Scholar 

  17. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS . The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007; 67: 9809–9816.

    CAS  PubMed  Google Scholar 

  18. Li J, Lee AS . Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 2006; 6: 45–54.

    CAS  PubMed  Google Scholar 

  19. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 2004; 6: 275–284.

    CAS  PubMed  Google Scholar 

  20. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 2005; 65: 4663–4672.

    CAS  PubMed  Google Scholar 

  21. Misra UK, Deedwania R, Pizzo SV . Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 2006; 281: 13694–13707.

    CAS  PubMed  Google Scholar 

  22. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS . Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003; 278: 20915–20924.

    CAS  PubMed  Google Scholar 

  23. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA . Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 2006; 66: 1702–1711.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Y, Li J, Lee AS . GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 2007; 67: 3734–3740.

    CAS  PubMed  Google Scholar 

  25. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 2007; 315: 1687–1691.

    CAS  PubMed  Google Scholar 

  26. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014; 508: 103–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN et al. CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 2012; 43: 364–373.

    CAS  PubMed  Google Scholar 

  30. Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci USA 2008; 105: 19444–19449.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 2008; 68: 498–505.

    CAS  PubMed  Google Scholar 

  32. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 2005; 24: 3470–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 2004; 64: 5943–5947.

    CAS  PubMed  Google Scholar 

  34. Romero-Ramirez L, Cao H, Regalado MP, Kambham N, Siemann D, Kim JJ et al. X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Transl Oncol 2009; 2: 31–38.

    PubMed  PubMed Central  Google Scholar 

  35. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007; 67: 6700–6707.

    CAS  PubMed  Google Scholar 

  36. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 2007; 318: 944–949.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tam AB, Koong AC, Niwa M . Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD. Cell Rep 2014; 9: 850–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138: 562–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Brandizzi F . IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 2013; 23: 547–555.

    CAS  PubMed  Google Scholar 

  40. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 2012; 48: 353–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  42. Wang M, Kaufman RJ . The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14: 581–597.

    CAS  PubMed  Google Scholar 

  43. Zhang K, Kaufman RJ . From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454: 455–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012; 287: 11629–11641.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun 2013; 20: 799–815.

    PubMed  Google Scholar 

  46. Bonizzi G, Karin M . The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288.

    CAS  PubMed  Google Scholar 

  47. Tam AB, Mercado EL, Hoffmann A, Niwa M . ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 2012; 7: e45078.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2004; 24: 10161–10168.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003; 23: 5651–5663.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R et al. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol 2009; 183: 1480–1487.

    CAS  PubMed  Google Scholar 

  51. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH . Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 2006; 26: 3071–3084.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT et al. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 2004; 279: 46384–46392.

    CAS  PubMed  Google Scholar 

  53. Roberts HR, Smartt HJ, Greenhough A, Moore AE, Williams AC, Paraskeva C . Colon tumour cells increase PGE(2) by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis 2011; 32: 1741–1747.

    CAS  PubMed  Google Scholar 

  54. Wheeler MC, Rizzi M, Sasik R, Almanza G, Hardiman G, Zanetti M . KDEL-retained antigen in B lymphocytes induces a proinflammatory response: a possible role for endoplasmic reticulum stress in adaptive T cell immunity. J Immunol 2008; 181: 256–264.

    CAS  PubMed  Google Scholar 

  55. Mumm JB, Oft M . Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 2008; 27: 5913–5919.

    CAS  PubMed  Google Scholar 

  56. Martinon F, Chen X, Lee AH, Glimcher LH . TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 2010; 11: 411–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen L, Jarujaron S, Wu X, Sun L, Zha W, Liang G et al. HIV protease inhibitor lopinavir-induced TNF-alpha and IL-6 expression is coupled to the unfolded protein response and ERK signaling pathways in macrophages. Biochem Pharmacol 2009; 78: 70–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA . HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 2009; 60: 2633–2643.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci USA 2010; 107: 17698–17703.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun 2014; 20: 799–815.

    PubMed  Google Scholar 

  61. Eletto D, Dersh D, Argon Y . GRP94 in ER quality control and stress responses. Semin Cell Dev Biol 2010; 21: 479–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Li Z . Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells 2005; 20: 173–182.

    CAS  PubMed  Google Scholar 

  63. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 2007; 26: 215–226.

    PubMed  PubMed Central  Google Scholar 

  64. Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y et al. Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 2010; 1: 79.

    PubMed  Google Scholar 

  65. Morales C, Rachidi S, Hong F, Sun S, Ouyang X, Wallace C et al. Immune chaperone gp96 drives the contributions of macrophages to inflammatory colon tumorigenesis. Cancer Res 2014; 74: 446–459.

    CAS  PubMed  Google Scholar 

  66. Zhang Y, Wu BX, Metelli A, Thaxton JE, Hong F, Rachidi S et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest 2015; 125: 859–869.

    PubMed  PubMed Central  Google Scholar 

  67. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 2006; 26: 9517–9532.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pereira ER, Liao N, Neale GA, Hendershot LM . Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 2010; 5: 1–13.

    Google Scholar 

  69. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–15558.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. de Almeida SF, Fleming JV, Azevedo JE, Carmo-Fonseca M, de Sousa M . Stimulation of an unfolded protein response impairs MHC class I expression. J Immunol 2007; 178: 3612–3619.

    CAS  PubMed  Google Scholar 

  71. Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, Meloche S et al. ER stress affects processing of MHC class I-associated peptides. BMC Immunol 2009; 10: 10.

    PubMed  PubMed Central  Google Scholar 

  72. Howarth M, Williams A, Tolstrup AB, Elliott T . Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc Natl Acad Sci USA 2004; 101: 11737–11742.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pellicciotta I, Cortez-Gonzalez X, Sasik R, Reiter Y, Hardiman G, Langlade-Demoyen P et al. Presentation of telomerase reverse transcriptase, a self-tumor antigen, is down-regulated by histone deacetylase inhibition. Cancer Res 2008; 68: 8085–8093.

    CAS  PubMed  Google Scholar 

  74. Bartoszewski R, Brewer JW, Rab A, Crossman DK, Bartoszewska S, Kapoor N et al. The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 2011; 286: 41862–41870.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L, Vetters J et al. The unfolded-protein-response sensor IRE-1alpha regulates the function of CD8alpha(+) dendritic cells. Nat Immunol 2014; 15: 248–257.

    CAS  PubMed  Google Scholar 

  76. Jamora C, Dennert G, Lee AS . Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 1996; 93: 7690–7694.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M . Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci USA 2011; 108: 6561–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M . Cell-extrinsic effects of tumor er stress imprint myeloid dendritic cells and impair CD8(+) T cell priming. PLoS One 2012; 7: e51845.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Norian LA, Rodriguez PC, O'Mara LA, Zabaleta J, Ochoa AC, Cella M et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res 2009; 69: 3086–3094.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahadevan NR, Zanetti M . Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. J Immunol 2011; 187: 4403–4409.

    CAS  PubMed  Google Scholar 

  81. Cullen SJ, Fatemie S, Ladiges W . Breast tumor cells primed by endoplasmic reticulum stress remodel macrophage phenotype. Am J Cancer Res 2013; 3: 196–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Iwakoshi NN, Pypaert M, Glimcher LH . The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007; 204: 2267–2275.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steinman RM, Nussenzweig MC . Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002; 99: 351–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014; 26: 331–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Coussens LM, Zitvogel L, Palucka AK . Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339: 286–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P et al. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 2014; 41: 389–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest 2014; 124: 2626–2639.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Szegezdi E, Logue SE, Gorman AM, Samali A . Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports 2006; 7: 880–885.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L . Tumor stress, cell death and the ensuing immune response. Cell Death Differ 2008; 15: 21–28.

    CAS  PubMed  Google Scholar 

  90. Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3: e27878.

    PubMed  PubMed Central  Google Scholar 

  91. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31: 1062–1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA . Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008; 29: 21–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Miller MB, Bassler BL . Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–199.

    CAS  PubMed  Google Scholar 

  94. Gurdon JB, Lemaire P, Kato K . Community effects and related phenomena in development. Cell 1993; 75: 831–834.

    CAS  PubMed  Google Scholar 

  95. Jouanneau J, Moens G, Bourgeois Y, Poupon MF, Thiery JP . A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression. Proc Natl Acad Sci USA 1994; 91: 286–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mori K . Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 2009; 146: 743–750.

    CAS  PubMed  Google Scholar 

  97. Sun J, Liu Y, Aballay A . Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. EMBO Rep 2012; 13: 855–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Taylor RC, Dillin A . XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013; 153: 1435–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Williams KW, Liu T, Kong X, Fukuda M, Deng Y, Berglund ED et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab 2014; 20: 471–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Meares GP, Liu Y, Rajbhandari R, Qin H, Nozell SE, Mobley JA et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 2014; 34: 3911–3925.

    PubMed  PubMed Central  Google Scholar 

  101. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513: 559–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Krajcovic M, Johnson NB, Sun Q, Normand G, Hoover N, Yao E et al. A non-genetic route to aneuploidy in human cancers. Nat Cell Biol 2011; 13: 324–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Duesberg P . Chromosomal chaos and cancer. Sci Am 2007; 296: 52–59.

    CAS  PubMed  Google Scholar 

  104. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Newburger DE, Kashef-Haghighi D, Weng Z, Salari R, Sweeney RT, Brunner AL et al. Genome evolution during progression to breast cancer. Genome Res 2013; 23: 1097–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dierick AM, Langlois M, Van Oostveldt P, Roels H . The prognostic significance of the DNA content in Ewing's sarcoma: a retrospective cytophotometric and flow cytometric study. Histopathology 1993; 23: 333–339.

    CAS  PubMed  Google Scholar 

  107. Owainati AA, Robins RA, Hinton C, Ellis IO, Dowle CS, Ferry B et al. Tumour aneuploidy, prognostic parameters and survival in primary breast cancer. Br J Cancer 1987; 55: 449–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yildirim-Assaf S, Coumbos A, Hopfenmuller W, Foss HD, Stein H, Kuhn W . The prognostic significance of determining DNA content in breast cancer by DNA image cytometry: the role of high grade aneuploidy in node negative breast cancer. J Clin Pathol 2007; 60: 649–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pfau SJ, Amon A . Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO reports 2012; 13: 515–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Siegel JJ, Amon A . New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 2012; 28: 189–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Torres EM, Williams BR, Amon A . Aneuploidy: cells losing their balance. Genetics 2008; 179: 737–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tang YC, Amon A . Gene copy-number alterations: a cost-benefit analysis. Cell 2013; 152: 394–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sheltzer JM, Torres EM, Dunham MJ, Amon A . Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA 2012; 109: 12644–12649.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC, Roche SP et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 2013; 341: 1238303.

    PubMed  PubMed Central  Google Scholar 

  115. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    CAS  PubMed  Google Scholar 

  116. Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio Y, Saya H . Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogene 2001; 20: 420–429.

    CAS  PubMed  Google Scholar 

  117. Boileve A, Senovilla L, Vitale I, Lissa D, Martins I, Metivier D et al. Immunosurveillance against tetraploidization-induced colon tumorigenesis. Cell Cycle 2013; 12: 473–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mahadevan NR, Fernandez A, Rodvold J, Almanza G, Zanetti M . Prostate cells undergoing ER stress in vitro and in vivo activate transcription of pro-inflammatory cytokines. J Inflam Res 2010; 3: 99–103.

    CAS  Google Scholar 

  119. Mahadevan NR, Rodvold JJ, Zanetti M . A Janus-faced role of the unfolded protein response in antitumor immunity. Oncoimmunology 2013; 2: e23901.

    PubMed  PubMed Central  Google Scholar 

  120. Ohyama S, Yonemura Y, Miyazaki I . Prognostic value of S-phase fraction and DNA ploidy studied with in vivo administration of bromodeoxyuridine on human gastric cancers. Cancer 1990; 65: 116–121.

    CAS  PubMed  Google Scholar 

  121. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    CAS  PubMed  Google Scholar 

  122. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 2013; 339: 543–548.

    CAS  PubMed  Google Scholar 

  123. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 2014; 510: 268–272.

    CAS  PubMed  Google Scholar 

  124. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K . Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 2014; 514: 54–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cleary AS, Leonard TL, Gestl SA, Gunther EJ . Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014; 508: 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tlsty TD, Coussens LM . Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119–150.

    CAS  PubMed  Google Scholar 

  129. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Balmain A, Gray J, Ponder B . The genetics and genomics of cancer. Nat Genet 2003; 33 (Suppl): 238–244.

    CAS  PubMed  Google Scholar 

  131. Baylin SB, Jones PA . A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 2011; 11: 726–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    CAS  PubMed  Google Scholar 

  133. Zadra G, Photopoulos C, Loda M . The fat side of prostate cancer. Biochim Biophys Acta 2013; 1831: 1518–1532.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Risbridger GP, Davis ID, Birrell SN, Tilley WD . Breast and prostate cancer: more similar than different. Nat Rev Cancer 2010; 10: 205–212.

    CAS  PubMed  Google Scholar 

  135. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    CAS  PubMed  Google Scholar 

  136. Logothetis CJ, Gallick GE, Maity SN, Kim J, Aparicio A, Efstathiou E et al. Molecular classification of prostate cancer progression: foundation for marker-driven treatment of prostate cancer. Cancer Discov 2013; 3: 849–861.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the UCSD Academic Senate to MZ. JJR acknowledges the support of the Frank H. and Eva B. Buck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Zanetti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanetti, M., Rodvold, J. & Mahadevan, N. The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. Oncogene 35, 269–278 (2016). https://doi.org/10.1038/onc.2015.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.108

This article is cited by

Search

Quick links