Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SUMOylation regulates AKT1 activity

Abstract

Serine threonine kinase AKT has a central role in the cell, controlling survival, proliferation, metabolism and angiogenesis. Deregulation of its activity underlies a wide range of pathological situations, including cancer. Here we show that AKT is post-translationally modified by the small ubiquitin-like modifier (SUMO) protein. Interestingly, neither SUMO conjugation nor activation of SUMOylated AKT is regulated by the classical AKT targeting to the cell membrane or by the phosphoinositide 3-kinase pathway. We demonstrate that SUMO induces the activation of AKT, whereas, conversely, down-modulation of the SUMO machinery diminishes AKT activation and cell proliferation. Furthermore, an AKT SUMOylation mutant shows reduced activation, and decreased anti-apoptotic and pro-tumoral activities in comparison with the wild-type protein. These results identify SUMO as a novel key regulator of AKT phosphorylation and activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Testa JR, Tsichlis PN . AKT signaling in normal and malignant cells. Oncogene 2005; 24: 7391–7393.

    Article  CAS  Google Scholar 

  2. Alessi DR, Cohen P . Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998; 8: 55–62.

    Article  CAS  Google Scholar 

  3. Calleja V, Laguerre M, Larijani B . 3-D structure and dynamics of protein kinase B-new mechanism for the allosteric regulation of an AGC kinase. J Chem Biol 2009; 2: 11–25.

    Article  Google Scholar 

  4. Brodbeck D, Cron P, Hemmings BA . A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem 1999; 274: 9133–9136.

    Article  CAS  Google Scholar 

  5. Flotho A, Melchior F . Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82: 357–385.

    Article  CAS  Google Scholar 

  6. Hay RT . SUMO: a history of modification. Mol Cell 2005; 18: 1–12.

    Article  CAS  Google Scholar 

  7. Gonzalez-Santamaria J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz-Herrera CF, Gonzalez D et al. Regulation of the tumor suppressor PTEN by SUMO. Cell Death Dis 2012; 3: e393.

    Article  CAS  Google Scholar 

  8. Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A et al. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2: ra24.

    Article  Google Scholar 

  9. Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 2003; 23: 2953–2968.

    Article  CAS  Google Scholar 

  10. Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK et al. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 2001; 276: 40263–40267.

    Article  CAS  Google Scholar 

  11. Mao Y, Desai SD, Liu LF . SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 2000; 275: 26066–26073.

    Article  CAS  Google Scholar 

  12. Miller MJ, Scalf M, Rytz TC, Hubler SL, Smith LM, Vierstra RD . Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Mol Cell Proteomics 2013; 12: 449–463.

    Article  CAS  Google Scholar 

  13. Tatham MH, Matic I, Mann M, Hay RT . Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci Signal 2011; 4: rs4.

    Article  CAS  Google Scholar 

  14. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441: 523–527.

    Article  CAS  Google Scholar 

  15. Kulik G, Klippel A, Weber MJ . Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997; 17: 1595–1606.

    Article  CAS  Google Scholar 

  16. Liu X, Powlas J, Shi Y, Oleksijew AX, Shoemaker AR, De Jong R et al. Rapamycin inhibits Akt-mediated oncogenic transformation and tumor growth. Anticancer Res 2004; 24: 2697–2704.

    CAS  PubMed  Google Scholar 

  17. Sakoda H, Gotoh Y, Katagiri H, Kurokawa M, Ono H, Onishi Y et al. Differing roles of Akt and serum- and glucocorticoid-regulated kinase in glucose metabolism, DNA synthesis, and oncogenic activity. J Biol Chem 2003; 278: 25802–25807.

    Article  CAS  Google Scholar 

  18. Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 2001; 159: 431–437.

    Article  CAS  Google Scholar 

  19. Bang OS, Ha BG, Park EK, Kang SS . Activation of Akt is induced by heat shock and involved in suppression of heat-shock-induced apoptosis of NIH3T3 cells. Biochem Biophys Res Commun 2000; 278: 306–311.

    Article  CAS  Google Scholar 

  20. Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T et al. Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol (Oxf) 2013; 207: 416–426.

    Article  CAS  Google Scholar 

  21. Sato S, Fujita N, Tsuruo T . Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97: 10832–10837.

    Article  CAS  Google Scholar 

  22. Warfel NA, Niederst M, Newton AC . Disruption of the interface between the pleckstrin homology (PH) and kinase domains of Akt protein is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2. J Biol Chem 2011; 286: 39122–39129.

    Article  CAS  Google Scholar 

  23. Laine J, Kunstle G, Obata T, Sha M, Noguchi M . The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 2000; 6: 395–407.

    Article  CAS  Google Scholar 

  24. Steinacher R, Schar P . Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 2005; 15: 616–623.

    Article  CAS  Google Scholar 

  25. Johnson ES . Protein modification by SUMO. Annu Rev Biochem 2004; 73: 355–382.

    Article  CAS  Google Scholar 

  26. Bossis G, Melchior F . SUMO: regulating the regulator. Cell Div 2006; 1: 13.

    Article  Google Scholar 

  27. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 2008; 10: 547–555.

    Article  CAS  Google Scholar 

  28. Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008; 7: 132–144.

    Article  CAS  Google Scholar 

  29. Bawa-Khalfe T, Yeh ET . SUMO Losing Balance: SUMO Proteases Disrupt SUMO Homeostasis to Facilitate Cancer Development and Progression. Genes Cancer 2010; 1: 748–752.

    Article  CAS  Google Scholar 

  30. Hsieh AC, Bo R, Manola J, Vazquez F, Bare O, Khvorova A et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res 2004; 32: 893–901.

    Article  CAS  Google Scholar 

  31. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1999; 96: 2110–2115.

    Article  CAS  Google Scholar 

  32. Desterro JM, Rodriguez MS, Hay RT . SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2: 233–239.

    Article  CAS  Google Scholar 

  33. Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI . Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 2006; 5: 2298–2310.

    Article  CAS  Google Scholar 

  34. Nguyen H, Gitig DM, Koff A . Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 1999; 19: 1190–1201.

    Article  CAS  Google Scholar 

  35. Campagna M, Herranz D, Garcia MA, Marcos-Villar L, Gonzalez-Santamaria J, Gallego P et al. SIRT1 stabilizes PML promoting its sumoylation. Cell Death Differ 2011; 18: 72–79.

    Article  CAS  Google Scholar 

  36. Marcos-Villar L, Lopitz-Otsoa F, Gallego P, Munoz-Fontela C, Gonzalez-Santamaria J, Campagna M et al. Kaposi's sarcoma-associated herpesvirus protein LANA2 disrupts PML oncogenic domains and inhibits PML-mediated transcriptional repression of the survivin gene. J Virol 2009; 83: 8849–8858.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr William R Sellers who deposited AKT plamids at Addgene. Funding at the laboratory of CR is provided by BFU-2011–27064. LM-V is supported by Juan de la Cierva Programme. CFC-H is supported by La Caixa fellowship. MC is an investigator of the Miguel Servet Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Rivas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Cruz-Herrera, C., Campagna, M., Lang, V. et al. SUMOylation regulates AKT1 activity. Oncogene 34, 1442–1450 (2015). https://doi.org/10.1038/onc.2014.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.48

This article is cited by

Search

Quick links