Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

PCK2 activation mediates an adaptive response to glucose depletion in lung cancer

Abstract

Cancer cells are reprogrammed to utilize glycolysis at high rates, which provides metabolic precursors for cell growth. Consequently, glucose levels may decrease substantially in underperfused tumor areas. Gluconeogenesis results in the generation of glucose from smaller carbon substrates such as lactate and amino acids. The key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK), has been shown to provide metabolites for cell growth. Still, the role of gluconeogenesis in cancer is unknown. Here we show that the mitochondrial isoform of PEPCK (PCK2) is expressed and active in three lung cancer cell lines and in non-small cell lung cancer samples. PCK2 expression and activity were enhanced under low-glucose conditions. PEPCK activity was elevated threefold in lung cancer samples over normal lungs. To track the conversion of metabolites along the gluconeogenesis pathway, lung cancer cell lines were incubated with 13C3-lactate and label enrichment in the phosphoenolpyruvate (PEP) pool was measured. Under low glucose, all three carbons from 13C3-lactate appeared in the PEP pool, further supporting a conversion of lactate to pyruvate, via pyruvate carboxylase to oxaloacetate, and via PCK2 to phosphoenolpyruvate. PCK2 small interfering RNA and the pharmacological PEPCK inhibitor 3-mercaptopicolinate significantly enhanced glucose depletion-induced apoptosis in A549 and H23 cells, but not in H1299 cells. The growth of H23 multicellular spheroids was significantly reduced by 3-mercaptopicolinate. The results of this study suggest that lung cancer cells may utilize at least some steps of gluconeogenesis to overcome the detrimental metabolic situation during glucose deprivation and that in human lung cancers this pathway is activated in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ramalingam SS, Owonikoko TK, Khuri FR . Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin 2011; 61: 91–112.

    Article  PubMed  Google Scholar 

  2. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA . Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J Clin Oncol 2010; 28: 4769–4777.

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulze A, Harris AL . How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364–373.

    Article  CAS  PubMed  Google Scholar 

  5. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  6. DeBerardinis RJ, Thompson CB . Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  PubMed  Google Scholar 

  8. Cantor JR, Sabatini DM . Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012; 2: 881–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walenta S, Snyder S, Haroon ZA, Braun RD, Amin K, Brizel D et al. Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 2001; 51: 840–848.

    Article  CAS  PubMed  Google Scholar 

  10. Schroeder T, Yuan H, Viglianti BL, Peltz C, Asopa S, Vujaskovic Z et al. Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res 2005; 65: 5163–5171.

    Article  CAS  PubMed  Google Scholar 

  11. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 2009; 69: 4918–4925.

    Article  CAS  PubMed  Google Scholar 

  12. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 2010; 9: 319–332.

    Article  CAS  PubMed  Google Scholar 

  13. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009; 8: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polet F, Feron O . Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 2013; 273: 156–165.

    CAS  PubMed  Google Scholar 

  15. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008; 118: 3930–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 2012; 72: 939–948.

    Article  CAS  PubMed  Google Scholar 

  17. Dang CV . Role of aerobic glycolysis in genetically engineered mouse models of cancer. BMC Biol 2013; 11: 11–13.

    Article  Google Scholar 

  18. Stryer L . Pentose phosphate pathway and gluconeogenesis. In: Stryer L (ed). Biochemistry. Freeman WH: New York, NY, USA 1995: 559–580.

    Google Scholar 

  19. Yang J, Kalhan SC, Hanson RW . What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 2009; 284: 27025–27029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong Y, Lei QY, Zhao S, Guan KL . Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol 2011; 76: 285–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Reshef L, Cassuto H, Aleman G, Hanson RW . Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 2009; 284: 27031–27035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalhan SC, Hanson RW . Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 2012; 287: 19786–19791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heist RS, Sequist LV, Engelman JA . Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol 2012; 7: 924–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Viollet B, Guigas B, Leclerc J, Hebrard S, Lantier L, Mounier R et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 2009; 196: 81–98.

    Article  CAS  Google Scholar 

  26. Scott WJ, Schwabe JL, Gupta NC, Dewan NA, Reeb SD, Sugimoto JT . Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. Ann Thorac Surg 1994; 58: 698–703.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  28. Kami K, Fujimori T, Sato H, Sato M, Yamamoto H, Ohashi Y et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 2013; 9: 444–453.

    Article  CAS  PubMed  Google Scholar 

  29. Thomlinson RH, Gray LH . The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955; 9: 539–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Halestrap AP . The monocarboxylate transporter family—Structure and functional characterization. IUBMB Life 2012; 64: 1–9.

    Article  CAS  PubMed  Google Scholar 

  31. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 2008; 3: e1651.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F . Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol 2010; 2010: 427694.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E . Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther 2007; 6: 1476–1479.

    Article  CAS  PubMed  Google Scholar 

  34. Lee GH, Kim DS, Chung MJ, Chae SW, Kim HR, Chae HJ . Lysyl oxidase-like-1 enhances lung metastasis when lactate accumulation and monocarboxylate transporter expression are involved. Oncol Lett 2011; 2: 831–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 2011; 108: 8674–8679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW et al. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem 2009; 284: 26578–26590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA . Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 2000; 20: 6508–6517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makinen AL, Nowak T . 3-Mercaptopicolinate. A reversible active site inhibitor of avian liver phosphoenolpyruvate carboxykinase. J Biol Chem 1983; 258: 11654–11662.

    CAS  PubMed  Google Scholar 

  39. Fell DA . Enzymes, metabolites and fluxes. J Exp Bot 2005; 56: 267–272.

    Article  CAS  PubMed  Google Scholar 

  40. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA . Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010; 148: 3–15.

    Article  CAS  PubMed  Google Scholar 

  41. Izuishi K, Kato K, Ogura T, Kinoshita T, Esumi H . Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 2000; 60: 6201–6207.

    CAS  PubMed  Google Scholar 

  42. Guenther GG, Liu G, Ramirez MU, McMonigle RJ, Kim SM, McCracken AN et al. Loss of TSC2 confers resistance to ceramide and nutrient deprivation. Oncogene (e-pub ahead of print 2013; doi:10.1038/onc.2013.139).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gauthier T, Denis-Pouxviel C, Murat JC . Carbohydrate metabolism in HT29 colon cancer cells cultured in a glucose free medium supplemented with inosine. Int J Biochem 1989; 21: 191–196.

    Article  CAS  PubMed  Google Scholar 

  44. Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG . Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 2002; 21: 7839–7849.

    Article  CAS  PubMed  Google Scholar 

  45. Chun SY, Johnson C, Washburn JG, Cruz-Correa MR, Dang DT, Dang LH . Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer 2010; 9: 293.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kung C, Hixon J, Choe S, Marks K, Gross S, Murphy E et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol 2012; 19: 1187–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Watford M, Hod Y, Chiao YB, Utter MF, Hanson RW . The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem 1981; 256: 10023–10027.

    CAS  PubMed  Google Scholar 

  48. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ . PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 2001; 26: 30–35.

    Article  CAS  PubMed  Google Scholar 

  50. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  51. Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev Cell 2013; 25: 463–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Rudolf Zechner, Karl Franzens University, Graz, Austria, for his advice and valuable discussions. The excellent technical help by Astrid Knopf, Elisabeth Pöllitzer and Alexandra Bertsch, and the contribution by Anna Katschnig are highly appreciated. We are grateful to Dr Günther Fauler and Christina Haas, Medical University of Graz, for their support. The study was supported by the Oesterreichische Nationalbank (Anniversary Fund, project number 12713 to HO) and by a research grant from the state government (KL). ALH is funded by Cancer Research UK and Inspire to Live.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Leithner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leithner, K., Hrzenjak, A., Trötzmüller, M. et al. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene 34, 1044–1050 (2015). https://doi.org/10.1038/onc.2014.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.47

This article is cited by

Search

Quick links