Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity

Subjects

Abstract

Cytokines of the interleukin-1 (IL-1) family, such as IL-1α/β and IL-18, have pleiotropic activities in innate and adaptive immune responses in host defense and diseases. Insight into their biological functions helped develop novel therapeutic approaches to treat human inflammatory diseases. IL-33 is an important member of the IL-1 family of cytokines and is a ligand of the ST2 receptor, a member of the IL-1 receptor family. However, the role of the IL-33/ST2 axis in tumor growth and metastasis of breast cancer remains unclear. Here, we demonstrate that IL-33 is a critical tumor promoter during epithelial cell proliferation and tumorigenesis in the breast. IL-33 dose- and time-dependently increased Cancer Osaka Thyroid (COT) phosphorylation via ST2-COT interaction in normal epithelial and breast cancer cells. The IL-33/ST2/COT cascade induced the activation of the MEK-ERK (MEK-extracellular signal-regulated kinase), JNK-cJun (cJun N-terminal kinase-cJun) and STAT3 (signal transducer and activator of transcription 3) signaling pathways, followed by increased AP-1 and stat3 transcriptional activity. When small interfering RNAs of ST2 and COT were introduced into cells, IL-33-induced AP-1 and stat3 activity were significantly decreased, unlike that in the control cells. The inhibition of COT activity resulted in decreased IL-33-induced epithelial cell transformation, and knockdown of IL-33, ST2 and COT in breast cancer cells attenuated tumorigenicity of breast cancer cells. Consistent with these observations, ST2 levels were positively correlated with COT expression in human breast cancer. These findings provide a novel perspective on the role of the IL-33/ST2/COT signaling pathway in supporting cancer-associated inflammation in the tumor microenvironment. Therapeutic approaches that target this pathway may, therefore, effectively inhibit carcinogenesis in the breast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kakkar R, Hei H, Dobner S, Lee RT . Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem 2012; 287: 6941–6948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    Article  CAS  PubMed  Google Scholar 

  3. Tominaga S . A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett 1989; 258: 301–304.

    Article  CAS  PubMed  Google Scholar 

  4. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU . IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA 2007; 104: 18660–18665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G, Gabay C . Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 2007; 40: 216–225.

    Article  CAS  PubMed  Google Scholar 

  6. Hu WT, Li MQ, Liu W, Jin LP, Li DJ, Zhu XY . IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-kappaB and ERK1/2 signaling. Mol Hum Reprod 2014; 20: 358–372.

    Article  PubMed  Google Scholar 

  7. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin WW, Karin M . A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117: 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    Article  CAS  PubMed  Google Scholar 

  10. Lin X, Cunningham ET Jr, Mu Y, Geleziunas R, Greene WC . The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases. Immunity 1999; 10: 271–280.

    Article  PubMed  Google Scholar 

  11. Kontoyiannis D, Boulougouris G, Manoloukos M, Armaka M, Apostolaki M, Pizarro T et al. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease. J Exp Med 2002; 196: 1563–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsatsanis C, Patriotis C, Bear SE, Tsichlis PN . The Tpl-2 protooncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc Natl Acad Sci USA 1998; 95: 3827–3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ceci JD, Patriotis CP, Tsatsanis C, Makris AM, Kovatch R, Swing DA et al. Tpl-2 is an oncogenic kinase that is activated by carboxy-terminal truncation. Genes Dev 1997; 11: 688–700.

    Article  CAS  PubMed  Google Scholar 

  14. Kim G, Khanal P, Lim SC, Yun HJ, Ahn SG, Ki SH et al. Interleukin-17 induces AP-1 activity and cellular transformation via upregulation of tumor progression locus 2 activity. Carcinogenesis 2013; 34: 341–350.

    Article  CAS  PubMed  Google Scholar 

  15. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS . Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis 2014; 35: 1352–1361.

    Article  CAS  PubMed  Google Scholar 

  16. Sugimoto K, Ohata M, Miyoshi J, Ishizaki H, Tsuboi N, Masuda A et al. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J Clin Invest 2004; 114: 857–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Itoh M, Murata T, Suzuki T, Shindoh M, Nakajima K, Imai K et al. Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. Oncogene 2006; 25: 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  19. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    CAS  PubMed  Google Scholar 

  20. Karin M . The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270: 16483–16486.

    Article  CAS  PubMed  Google Scholar 

  21. Radisky DC, Bissell MJ . Cancer. Respect thy neighbor!. Science 2004; 303: 775–777.

    Article  CAS  PubMed  Google Scholar 

  22. Balkwill F, Charles KA, Mantovani A . Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211–217.

    Article  CAS  PubMed  Google Scholar 

  23. Onda H, Kasuya H, Takakura K, Hori T, Imaizumi T, Takeuchi T et al. Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab 1999; 19: 1279–1288.

    Article  CAS  PubMed  Google Scholar 

  24. Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 2003; 163: 69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tominaga S, Jenkins NA, Gilbert DJ, Copeland NG, Tetsuka T . Molecular cloning of the murine ST2 gene. Characterization and chromosomal mapping. Biochim Biophys Acta 1991; 1090: 1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M . Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J 1994; 13: 1176–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palmer G, Lipsky BP, Smithgall MD, Meininger D, Siu S, Talabot-Ayer D et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine 2008; 42: 358–364.

    Article  CAS  PubMed  Google Scholar 

  28. Pushparaj PN, Tay HK, H'Ng S C, Pitman N, Xu D, McKenzie A et al. The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA 2009; 106: 9773–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G . Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol 2007; 179: 2051–2054.

    Article  CAS  PubMed  Google Scholar 

  30. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV . TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–446.

    Article  CAS  PubMed  Google Scholar 

  31. Funakoshi-Tago M, Tago K, Hayakawa M, Tominaga S, Ohshio T, Sonoda Y et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell Signal 2008; 20: 1679–1686.

    Article  CAS  PubMed  Google Scholar 

  32. Jovanovic I, Radosavljevic G, Mitrovic M, Juranic VL, McKenzie AN, Arsenijevic N et al. ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol 2011; 41: 1902–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN et al. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 2014; 134: 1669–1682.

    Article  CAS  PubMed  Google Scholar 

  34. Kolch W . Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  35. Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C et al. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 2002; 101: 415–422.

    Article  CAS  PubMed  Google Scholar 

  36. Gelin J, Moldawer LL, Lonnroth C, Sherry B, Chizzonite R, Lundholm K . Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res 1991; 51: 415–421.

    CAS  PubMed  Google Scholar 

  37. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000; 103: 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  38. Choi HS, Kang BS, Shim JH, Cho YY, Choi BY, Bode AM et al. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity. FASEB J 2008; 22: 113–126.

    Article  CAS  PubMed  Google Scholar 

  39. Khanal P, Choi HK, Namgoong GM, Ahn SG, Yoon JH, Sohn H et al. 5'-Nitro-indirubinoxime inhibits epidermal growth factor- and phorbol ester-induced AP-1 activity and cell transformation through inhibition of phosphorylation of Pin1. Mol Carcinogen 2011; 50: 961–971.

    Article  CAS  Google Scholar 

  40. Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W et al. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res 2006; 66: 2544–2552.

    Article  CAS  PubMed  Google Scholar 

  41. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 2006; 12: 11–19.

    Article  CAS  PubMed  Google Scholar 

  42. Dolled-Filhart M, Camp RL, Kowalski DP, Smith BL, Rimm DL . Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res 2003; 9: 594–600.

    CAS  PubMed  Google Scholar 

  43. Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 2006; 12: 20–28.

    Article  CAS  PubMed  Google Scholar 

  44. Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A, Frank DA . Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors. Cancer Res 2005; 65: 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  45. Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I et al. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci USA 2004; 101: 10602–10607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Shaw PE . Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem 2002; 277: 17397–17405.

    Article  CAS  PubMed  Google Scholar 

  47. Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD . EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 2001; 19: 1155–1160.

    CAS  PubMed  Google Scholar 

  48. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001; 20: 2499–2513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (NRF-2013R1A1A2004714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Choi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lim, SC., Kim, G. et al. Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene 34, 4928–4938 (2015). https://doi.org/10.1038/onc.2014.418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.418

This article is cited by

Search

Quick links