Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hematopoietic PBX-interacting protein (HPIP) is over expressed in breast infiltrative ductal carcinoma and regulates cell adhesion and migration through modulation of focal adhesion dynamics

Subjects

Abstract

The scaffolding protein, hematopoietic PBX-interacting protein (HPIP/PBXIP1), regulates cell migration necessary for cancer cell dissemination. However, the mechanism that governs this process remains unknown. We show here that HPIP expression is associated with stages of breast cancer where cell dissemination results in poor patient outcome. Our investigation finds a novel association of HPIP with focal adhesion kinase (FAK) regulating FA dynamics. Interestingly, this interaction that led to activation of FAK protein was mediated by the C-terminal domain of HPIP and not the typical integrin-binding motif. Further, short hairpin RNA-mediated knockdown of FAK expression significantly reduced HPIP-induced cell migration indicating participation of FAK pathway. Live-cell time-lapse imaging and biochemical analysis further established the role of HPIP in microtubule-induced FA disassembly. We also found that HPIP-mediated MAPK activation led to phosphorylation and subsequent activation of calpain2, and the activated calpain2 in turn proteolyses FA protein, talin. Interestingly, HPIP is also proteolysed by calpain2 in breast cancer cells. The proteolysis of HPIP and talin by calpain2, and the activation of calapin2 by HPIP-mediated MAPK phosphorylation, is a novel regulatory axis to modulate the cell migration signal. Together, we have determined HPIP as a novel activator of FAK and a new substrate of calpain2. These molecular interactions between HPIP and FAK, and HPIP and calpain2 regulate cell adhesion and migration through modulation of FA dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS . Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 2005; 15: 138–145.

    Article  CAS  PubMed  Google Scholar 

  2. Desgrosellier JS, Cheresh DA . Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  4. Lauffenburger DA, Horwitz AF . Cell migration: a physically integrated molecular process. Cell 1996; 84: 359–369.

    Article  CAS  PubMed  Google Scholar 

  5. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  6. Goode BL, Drubin DG, Barnes G . Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 2000; 12: 63–71.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM . Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 2003; 5: 599–609.

    Article  CAS  PubMed  Google Scholar 

  8. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539–544.

    Article  CAS  PubMed  Google Scholar 

  9. Sieg DJ, Hauck CR, Schlaepfer DD . Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 1999; 112 (Pt 16): 2677–2691.

    CAS  PubMed  Google Scholar 

  10. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY . Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–799.

    Article  CAS  PubMed  Google Scholar 

  11. Golubovskaya VM . Focal adhesion kinase as a cancer therapy target. Anticancer Agents Med Chem 2010; 10: 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 1995; 55: 2752–2755.

    CAS  PubMed  Google Scholar 

  13. Weiner TM, Liu ET, Craven RJ, Cance WG . Expression of focal adhesion kinase gene and invasive cancer. Lancet 1993; 342: 1024–1025.

    Article  CAS  PubMed  Google Scholar 

  14. Calalb MB, Polte TR, Hanks SK . Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 1995; 15: 954–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schaller MD . Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  16. Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P . Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 2005; 118: 4415–4425.

    Article  CAS  PubMed  Google Scholar 

  17. Ritt M, Guan JL, Sivaramakrishnan S . Visualizing and manipulating focal adhesion kinase regulation in live cells. J Biol Chem 2013; 288: 8875–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC . A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr Biol 2003; 13: 1442–1450.

    Article  CAS  PubMed  Google Scholar 

  19. Stehbens S, Wittmann T . Targeting and transport: how microtubules control focal adhesion dynamics. J Cell Biol 2012; 198: 481–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ezratty EJ, Partridge MA, Gundersen GG . Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 2005; 7: 581–590.

    Article  CAS  PubMed  Google Scholar 

  21. Krylyshkina O, Kaverina I, Kranewitter W, Steffen W, Alonso MC, Cross RA et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J Cell Biol 2002; 156: 349–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abramovich C, Shen WF, Pineault N, Imren S, Montpetit B, Largman C et al. Functional cloning and characterization of a novel nonhomeodomain protein that inhibits the binding of PBX1-HOX complexes to DNA. J Biol Chem 2000; 275: 26172–26177.

    Article  CAS  PubMed  Google Scholar 

  23. Manavathi B, Lo D, Bugide S, Dey O, Imren S, Weiss MJ et al. Functional regulation of pre-B-cell leukemia homeobox interacting protein 1 (PBXIP1/HPIP) in erythroid differentiation. J Biol Chem 2012; 287: 5600–5614.

    Article  CAS  PubMed  Google Scholar 

  24. Manavathi B, Acconcia F, Rayala SK, Kumar R . An inherent role of microtubule network in the action of nuclear receptor. Proc Natl Acad Sci USA 2006; 103: 15981–15986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XH, Yang ZH, Zhang H, Ding LH, Li XR, Zhu C et al. The estrogen receptor-interacting protein HPIP increases estrogen-responsive gene expression through activation of MAPK and AKT. Biochim Biophys Acta 2008; 1783: 1220–1228.

    Article  CAS  PubMed  Google Scholar 

  26. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14: 518–527.

    Article  CAS  PubMed  Google Scholar 

  27. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  28. Panetti TS . Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci 2002; 7: d143–d150.

    CAS  PubMed  Google Scholar 

  29. Mitra SK, Hanson DA, Schlaepfer DD . Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6: 56–68.

    Article  CAS  PubMed  Google Scholar 

  30. Wu XY, Kodama A, Fuchs E . ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 2008; 135: 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY et al. GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration. PLoS ONE 2012; 7: e51259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glading A, Lauffenburger DA, Wells A . Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 2002; 12: 46–54.

    Article  CAS  PubMed  Google Scholar 

  33. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 2004; 6: 977–983.

    Article  CAS  PubMed  Google Scholar 

  34. Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA et al. Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 2004; 24: 2499–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest 2013; 123: 630–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wozniak MA, Modzelewska K, Kwong L, Keely PJ . Focal adhesion regulation of cell behavior. Biochim Biophys Acta 2004; 1692: 103–119.

    Article  CAS  PubMed  Google Scholar 

  37. Geiger B, Spatz JP, Bershadsky AD . Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10: 21–33.

    Article  CAS  PubMed  Google Scholar 

  38. Cooper LA, Shen TL, Guan JL . Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol 2003; 23: 8030–8041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagano M, Hoshino D, Sakamoto T, Kawasaki N, Koshikawa N, Seiki M . ZF21 protein regulates cell adhesion and motility. J Biol Chem 2010; 285: 21013–21022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franco S, Perrin B, Huttenlocher A . Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res 2004; 299: 179–187.

    Article  CAS  PubMed  Google Scholar 

  41. Chan KT, Bennin DA, Huttenlocher A . Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 2010; 285: 11418–11426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 2004; 6: 154–161.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Elaine Fuchs, Rockefeller University, New York, for providing pBABE-FAK, DsRed2-zyxin and pEGFP-paxillin constructs, and Dr Sam Aparicio, British Columbia Cancer Agency, Vancouver, Canada, for providing pGIPz-FAKshRNA clones. This work was supported by Department of Biotechnology (DBT), India Grant Nos: BT/01/IYBA/2009, BT/PR11114/BRB/10/635/2008 and BT-BRB-TF-4-2013, and Department of Science and Technology (DST), Grant Nos: SB/SO/BB/013/2013, India (to BM). SB is Senior Research Fellow, Council for Scientific and Industrial Research, India (CSIR), India. The authors also acknowledge DBT-CREBB, UGC-PURSE, DST-FIST and UOH-SAP-CAS for providing the research facilities at University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Manavathi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugide, S., David, D., Nair, A. et al. Hematopoietic PBX-interacting protein (HPIP) is over expressed in breast infiltrative ductal carcinoma and regulates cell adhesion and migration through modulation of focal adhesion dynamics. Oncogene 34, 4601–4612 (2015). https://doi.org/10.1038/onc.2014.389

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.389

This article is cited by

Search

Quick links