Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Serine–arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer

Subjects

Abstract

Angiogenesis is required for tumour growth and is induced principally by vascular endothelial growth factor A (VEGF-A). VEGF-A pre-mRNA is alternatively spliced at the terminal exon to produce two families of isoforms, pro- and anti-angiogenic, only the former of which is upregulated in prostate cancer (PCa). In renal epithelial cells and colon cancer cells, the choice of VEGF splice isoforms is controlled by the splicing factor SRSF1, phosphorylated by serine–arginine protein kinase 1 (SRPK1). Immunohistochemistry staining of human samples revealed a significant increase in SRPK1 expression both in prostate intra-epithelial neoplasia lesions as well as malignant adenocarcinoma compared with benign prostate tissue. We therefore tested the hypothesis that the selective upregulation of pro-angiogenic VEGF in PCa may be under the control of SRPK1 activity. A switch in the expression of VEGF165 towards the anti-angiogenic splice isoform, VEGF165b, was seen in PC-3 cells with SRPK1 knockdown (KD). PC-3 SRPK1-KD cells resulted in tumours that grew more slowly in xenografts, with decreased microvessel density. No effect was seen as a result of SRPK1-KD on growth, proliferation, migration and invasion capabilities of PC-3 cells in vitro. Small-molecule inhibitors of SRPK1 switched splicing towards the anti-angiogenic isoform VEGF165b in PC-3 cells and decreased tumour growth when administered intraperitoneally in an orthotopic mouse model of PCa. Our study suggests that modulation of SRPK1 and subsequent inhibition of tumour angiogenesis by regulation of VEGF splicing can alter prostate tumour growth and supports further studies for the use of SRPK1 inhibition as a potential anti-angiogenic therapy in PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  PubMed  Google Scholar 

  2. Gatta G, Mallone S, van der Zwan JM, Trama A, Siesling S, Capocaccia R . Cancer prevalence estimates in Europe at the beginning of 2000. Ann Oncol 2013; 24: 1660–1666.

    Article  CAS  PubMed  Google Scholar 

  3. Quaglia A, Lillini R, Crocetti E, Buzzoni C, Vercelli M . Incidence and mortality trends for four major cancers in the elderly and middle-aged adults: An international comparison. Surg Oncol 2013; 22: e31–e38 24.

    Article  PubMed  Google Scholar 

  4. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E . European cancer mortality predictions for the year 2013. Ann Oncol 2013; 24: 792–800

    Article  CAS  PubMed  Google Scholar 

  5. Whang YE, Armstrong AJ, Rathmell WK, Godley PA, Kim WY, Pruthi RS et al. A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer. Urol Oncol 2013; 31: 82–86.

    Article  CAS  PubMed  Google Scholar 

  6. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  7. Clarke JM, Armstrong AJ . Novel therapies for the treatment of advanced prostate cancer. Curr Treat Options Oncol 2013; 14: 109–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karantanos T, Corn PG, Thompson TC . Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32: 5501–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drake CG, Sharma P, Gerritsen W . Metastatic castration-resistant prostate cancer: new therapies, novel combination strategies and implications for immunotherapy. Oncogene 2014; 33: 5053–5064.

    Article  CAS  PubMed  Google Scholar 

  10. Folkman J, Merler E, Abernathy C, Williams G . Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP et al. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 1997; 157: 2329–2333.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP et al. Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 1998; 51: 161–167.

    Article  CAS  PubMed  Google Scholar 

  14. Duque JL, Loughlin KR, Adam RM, Kantoff P, Mazzucchi E, Freeman MR . Measurement of plasma levels of vascular endothelial growth factor in prostate cancer patients: relationship with clinical stage, Gleason score, prostate volume, and serum prostate-specific antigen. Clinics (Sao Paulo) 2006; 61: 401–408.

    Article  Google Scholar 

  15. Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR . Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 1999; 54: 523–527.

    Article  CAS  PubMed  Google Scholar 

  16. Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ et al. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 2001; 61: 2533–2536.

    CAS  PubMed  Google Scholar 

  17. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J . Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993; 143: 401–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukherji D, Temraz S, Wehbe D, Shamseddine A . Angiogenesis and anti-angiogenic therapy in prostate cancer. Crit Rev Oncol Hematol 2013; 87: 122–131.

    Article  PubMed  Google Scholar 

  19. Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 2012; 30: 1534–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 2002; 62: 4123–4131.

    CAS  PubMed  Google Scholar 

  21. Cebe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci 2006; 63: 2067–2077.

    Article  CAS  PubMed  Google Scholar 

  22. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 2004; 64: 7822–7835.

    Article  CAS  PubMed  Google Scholar 

  23. Rennel E, Waine E, Guan H, Schuler Y, Leenders W, Woolard J et al. The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer 2008; 98: 1250–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harper SJ, Bates DO . VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 2008; 8: 880–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Varey AH, Rennel ES, Qiu Y, Bevan HS, Perrin RM, Raffy S et al. VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 2008; 98: 1366–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bates DO, Catalano PJ, Symonds KE, Varey AH, Ramani P, O'Dwyer PJ et al. Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clin Cancer Res 2012; 18: 6384–6391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amin EM, Oltean S, Hua J, Gammons MV, Hamdollah-Zadeh M, Welsh GI et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 2011; 20: 768–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oltean S, Gammons M, Hulse R, Hamdollah-Zadeh M, Mavrou A, Donaldson L et al. SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment for multiple diseases. Biochem Soc Trans 2012; 40: 831–835.

    Article  CAS  PubMed  Google Scholar 

  29. Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G et al. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 2010; 285: 5532–5540.

    Article  CAS  PubMed  Google Scholar 

  30. Gammons MV, Federov O, Ivison D, Du C, Clark TL, Hopkins C et al. Topical anti-angiogenic SRPK1 inhibitors reduce choroidal neovascularization in rodent models of exudative-AMD. Invest Ophthalmol Vis Sci 2013; 54: 6052–6062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell 2012; 47: 422–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambrechts D, Lenz HJ, de Haas S, Carmeliet P, Scherer SJ . Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 2013; 31: 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  33. Fukuhara T, Hosoya T, Shimizu S, Sumi K, Oshiro T, Yoshinaka Y et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci USA 2006; 103: 11329–11333.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayes GM, Carrigan PE, Miller LJ . Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res 2007; 67: 2072–2080.

    Article  CAS  PubMed  Google Scholar 

  35. Odunsi K, Mhawech-Fauceglia P, Andrews C, Beck A, Amuwo O, Lele S et al. Elevated expression of the serine-arginine protein kinase 1 gene in ovarian cancer and its role in Cisplatin cytotoxicity in vitro. PLoS ONE 2012; 7: e51030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gout S, Brambilla E, Boudria A, Drissi R, Lantuejoul S, Gazzeri S et al. Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS ONE 2012; 7: e46539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou B, Li Y, Deng Q, Wang H, Wang Y, Cai B et al. SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt. Mol Cell Biochem 2013; 379: 191–199.

    Article  CAS  PubMed  Google Scholar 

  38. Bates DO, Mavrou A, Qiu Y, Carter JG, Hamdollah-Zadeh M, Barratt S et al. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS ONE 2013; 8: e68399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang M, Jiang P, Yamamoto N, Li L, Geller J, Moossa AR et al. Real-time whole-body imaging of an orthotopic metastatic prostate cancer model expressing red fluorescent protein. Prostate 2005; 62: 374–379.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Andrew Armstrong (Duke University) for critical reading of the manuscript and helpful suggestions and the staff from AntiCancer Research Ltd. (San Diego) for training Athina Mavrou in the orthotopic prostate cancer model. This work was supported by Prostate Cancer Research UK, BBSRC (BB/J007293/1), the Medical Research Council (G10002073), Cancer Research UK (C11392/A10484) and Richard Bright VEGF Research Trust (North Bristol Cancer Research Projects Fund no. 96464).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D O Bates or S Oltean.

Ethics declarations

Competing interests

DO Bates and SJ Harper are inventors on patents related to control of splicing of VEGF. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrou, A., Brakspear, K., Hamdollah-Zadeh, M. et al. Serine–arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 34, 4311–4319 (2015). https://doi.org/10.1038/onc.2014.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.360

This article is cited by

Search

Quick links