Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mdmx promotes genomic instability independent of p53 and Mdm2

Abstract

The oncogene Mdmx is overexpressed in many human malignancies, and together with Mdm2, negatively regulates the p53 tumor suppressor. However, a p53-independent function of Mdmx that impacts genome stability has been described, but this function is not well understood. In the present study, we determined that of the 13 different cancer types evaluated, 6–90% of those that had elevated levels of Mdmx had concurrent inactivation (mutated or deleted) of p53. We show elevated levels of Mdmx-inhibited double-strand DNA break repair and induced chromosome and chromatid breaks independent of p53, leading to genome instability. Mdmx impaired early DNA damage-response signaling, such as phosphorylation of the serine/threonine-glutamine motif, mediated by the ATM kinase. Moreover, we identified Mdmx associated with Nbs1 of the Mre11-Rad50-Nbs1 (MRN) DNA repair complex, and this association increased upon DNA damage and was detected at chromatin. Elevated Mdmx levels also increased cellular transformation in a p53-independent manner. Unexpectedly, all Mdmx-mediated phenotypes also occurred in cells lacking Mdm2 and were independent of the Mdm2-binding domain (RING) of Mdmx. Therefore, Mdmx-mediated inhibition of the DNA damage response resulted in delayed DNA repair and increased genome instability and transformation independent of p53 and Mdm2. Our results reveal a novel p53- and Mdm2-independent oncogenic function of Mdmx that provides new insight into the many cancers that overexpress Mdmx.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Momand J, Jung D, Wilczynski S, Niland J . The MDM2 gene amplification database. Nucleic Acids Res 1998; 26: 3453–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rayburn E, Zhang R, He J, Wang H . MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 2005; 5: 27–41.

    Article  CAS  PubMed  Google Scholar 

  3. Wade M, Li YC, Wahl GM . MDM2 MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 2013; 13: 83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 1997; 11: 714–725.

    Article  CAS  PubMed  Google Scholar 

  5. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM . Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 2005; 280: 18771–18781.

    Article  CAS  PubMed  Google Scholar 

  6. Bouska A, Lushnikova T, Plaza S, Eischen CM . Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 2008; 28: 4862–4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A . Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95: 15608–15612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melo AN, Eischen CM . Protecting the genome from mdm2 and mdmx. Genes Cancer 2012; 3: 283–290.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bekker-Jensen S, Mailand N . Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 2010; 9: 1219–1228.

    Article  CAS  Google Scholar 

  10. Stracker TH, Petrini JH . The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 2011; 12: 90–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . Requirement of the MRN complex for ATM activation by DNA damage. Embo J 2003; 22: 5612–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JH, Paull TT . ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308: 551–554.

    Article  CAS  PubMed  Google Scholar 

  13. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 2005; 7: 675–685.

    Article  CAS  PubMed  Google Scholar 

  14. Negrini S, Gorgoulis VG, Halazonetis TD . Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228.

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  16. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998; 93: 467–476.

    Article  CAS  PubMed  Google Scholar 

  17. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93: 477–486.

    Article  CAS  PubMed  Google Scholar 

  18. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004; 24: 5835–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 2001; 61: 1839–1842.

    CAS  PubMed  Google Scholar 

  20. Leventaki V, Rodic V, Tripp SR, Bayerl MG, Perkins SL, Barnette P et al. TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol 2012; 158: 763–771.

    Article  CAS  PubMed  Google Scholar 

  21. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  22. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006; 444: 61–66.

    Article  CAS  PubMed  Google Scholar 

  23. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. Embo J 1996; 15: 5349–5357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2001; 2: 1029–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marine JC, Dyer MA, Jochemsen AG . MDMX: from bench to bedside. J Cell Sci 2007; 120: 371–378.

    Article  CAS  PubMed  Google Scholar 

  26. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M . MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 447: 5–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sharp DA, Kratowicz SA, Sank MJ, George DL . Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem 1999; 274: 38189–38196.

    Article  CAS  PubMed  Google Scholar 

  28. Pei D, Zhang Y, Zheng J . Regulation of p53: a collaboration between Mdm2 and Mdmx. Oncotarget 2012; 3: 228–235.

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Clercq S, Gembarska A, Denecker G, Maetens M, Naessens M, Haigh K et al. Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol Cell Biol 2010; 30: 5394–5405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giglio S, Mancini F, Gentiletti F, Sparaco G, Felicioni L, Barassi F et al. Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization. Cancer Res 2005; 65: 9687–9694.

    Article  CAS  PubMed  Google Scholar 

  31. Lam S, Lodder K, Teunisse AF, Rabelink MJ, Schutte M, Jochemsen AG . Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 2010; 29: 2415–2426.

    Article  CAS  PubMed  Google Scholar 

  32. Matijasevic Z, Steinman HA, Hoover K, Jones SN . MdmX promotes bipolar mitosis to suppress transformation and tumorigenesis in p53-deficient cells and mice. Mol Cell Biol 2008; 28: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  33. Matijasevic Z, Krzywicka-Racka A, Sluder G, Jones SN . MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 2008; 7: 2967–2973.

    Article  CAS  PubMed  Google Scholar 

  34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  35. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li X, Gilkes D, Li B, Cheng Q, Pernazza D, Lawrence H et al. Abnormal MDMX degradation in tumor cells due to ARF deficiency. Oncogene 2012; 31: 3721–3732.

    Article  CAS  PubMed  Google Scholar 

  37. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  38. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  39. Kim ST, Lim DS, Canman CE, Kastan MB . Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 1999; 274: 37538–37543.

    Article  CAS  PubMed  Google Scholar 

  40. Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 1999; 59: 2464–2469.

    CAS  PubMed  Google Scholar 

  41. Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. Embo J 2004; 23: 2674–2683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP . MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2005; 123: 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  43. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan Y, Chen J . MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 2003; 23: 5113–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM . DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 2003; 278: 45946–45953.

    Article  CAS  PubMed  Google Scholar 

  46. Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 2005; 102: 5056–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen L, Gilkes DM, Pan Y, Lane WS, Chen J . ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. Embo J 2005; 24: 3411–3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White JS, Choi S, Bakkenist CJ . Irreversible chromosome damage accumulates rapidly in the absence of ATM kinase activity. Cell Cycle 2008; 7: 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  49. White JS, Choi S, Bakkenist CJ . Transient ATM kinase inhibition disrupts DNA damage-induced sister chromatid exchange. Sci Signal 2010; 3: ra44.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pant V, Xiong S, Iwakuma T, Quintas-Cardama A, Lozano G . Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci USA 2011; 108: 11995–12000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci USA 2011; 108: 12001–12006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong S, Pant V, Suh YA, Van Pelt CS, Wang Y, Valentin-Vega YA et al. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res 2010; 70: 7148–7154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang P, Lushnikova T, Odvody J, Greiner TC, Jones SN, Eischen CM . Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 2008; 27: 1590–1598.

    Article  CAS  PubMed  Google Scholar 

  55. Braden WA, Lenihan JM, Lan Z, Luce KS, Zagorski W, Bosco E et al. Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression. Mol Cell Biol 2006; 26: 7667–7681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Brandon Metge for technical expertise; Dr Jean-Christophe Marine for providing the Mdmx vector; Dr Stephen Jones for providing the Mdmx−/−p53−/− MEFs; members of the Eischen lab for thoughtful discussions and critical review of this manuscript. This work was supported by NCI grants F31CA150546 (AMC), T32CA009582 (AMC), R01CA117935 (CME) and R01CA160432 (CME), and NCI Cancer Center Support Grant P30CA068485 utilizing the Flow Cytometry Shared Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Eischen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, A., Bouska, A., Arrate, M. et al. Mdmx promotes genomic instability independent of p53 and Mdm2. Oncogene 34, 846–856 (2015). https://doi.org/10.1038/onc.2014.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.27

This article is cited by

Search

Quick links