Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GD3 synthase regulates epithelial–mesenchymal transition and metastasis in breast cancer

Subjects

Abstract

The epithelial–mesenchymal transition (EMT) bestows cancer cells with increased stem cell properties and metastatic potential. To date, multiple extracellular stimuli and transcription factors have been shown to regulate EMT. Many of them are not druggable and therefore it is necessary to identify targets, which can be inhibited using small molecules to prevent metastasis. Recently, we identified the ganglioside GD2 as a novel breast cancer stem cell marker. Moreover, we found that GD3 synthase (GD3S)—an enzyme involved in GD2 biosynthesis—is critical for GD2 production and could serve as a potential druggable target for inhibiting tumor initiation and metastasis. Indeed, there is a small molecule known as triptolide that has been shown to inhibit GD3S function. Accordingly, in this manuscript, we demonstrate that the inhibition of GD3S using small hairpin RNA or triptolide compromises the initiation and maintenance of EMT instigated by various signaling pathways, including Snail, Twist and transforming growth factor-β1 as well as the mesenchymal characteristics of claudin-low breast cancer cell lines (SUM159 and MDA-MB-231). Moreover, GD3S is necessary for wound healing, migration, invasion and stem cell properties in vitro. Most importantly, inhibition of GD3S in vivo prevents metastasis in experimental as well as in spontaneous syngeneic wild-type mouse models. We also demonstrate that the transcription factor FOXC2, a central downstream effector of several EMT pathways, directly regulates GD3S expression by binding to its promoter. In clinical specimens, the expression of GD3S correlates with poor prognosis in triple-negative human breast tumors. Moreover, GD3S expression correlates with activation of the c-Met signaling pathway leading to increased stem cell properties and metastatic competence. Collectively, these findings suggest that the GD3S-c-Met axis could serve as an effective target for the treatment of metastatic breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hay ED . An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154: 8–20.

    CAS  Google Scholar 

  2. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  3. Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL . Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 2011; 22: 4750–4764.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kiemer AK, Takeuchi K, Quinlan MP . Identification of genes involved in epithelial-mesenchymal transition and tumor progression. Oncogene 2001; 20: 6679–6688.

    CAS  PubMed  Google Scholar 

  5. Vincent-Salomon A, Thiery JP . Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 2003; 5: 101–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xue C, Plieth D, Venkov C, Xu C, Neilson EG . The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 2003; 63: 3386–3394.

    CAS  PubMed  Google Scholar 

  7. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156: 299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E . TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10: 2462–2477.

    CAS  PubMed  Google Scholar 

  9. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    CAS  PubMed  Google Scholar 

  10. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    CAS  PubMed  Google Scholar 

  11. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    CAS  PubMed  Google Scholar 

  12. Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC, Weinberg RA . The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 2006; 103: 18969–18974.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

    CAS  PubMed  Google Scholar 

  14. Huber MA, Kraut N, Beug H . Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

    CAS  PubMed  Google Scholar 

  15. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP . Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 2004; 23: 1155–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bates RC, Mercurio AM . Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 2003; 14: 1790–1800.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fillmore CM, Kuperwasser C . Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10: R25.

    PubMed  PubMed Central  Google Scholar 

  18. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 2008; 3: e2888.

    PubMed  PubMed Central  Google Scholar 

  21. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    CAS  PubMed  Google Scholar 

  22. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 2010; 28: 1435–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 2012; 122: 2066–2078.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995; 373: 699–702.

    CAS  PubMed  Google Scholar 

  26. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C . Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768–771.

    CAS  PubMed  Google Scholar 

  27. Zhang YW, Vande Woude GF . HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88: 408–417.

    CAS  PubMed  Google Scholar 

  28. van Leenders GJ, Sookhlall R, Teubel WJ, de Ridder CM, Reneman S, Sacchetti A et al. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS ONE 2011; 6: e26753.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R . Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 2007; 97: 368–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR . Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55: 1129–1138.

    CAS  PubMed  Google Scholar 

  31. Tsao MS, Liu N, Chen JR, Pappas J, Ho J, To C et al. Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer 1998; 20: 1–16.

    CAS  PubMed  Google Scholar 

  32. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.

    CAS  PubMed  Google Scholar 

  33. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE . Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 1996; 148: 225–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A et al. GD(3) synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 2010; 8: 1526–1535.

    CAS  PubMed  Google Scholar 

  35. Kwon HY, Kim SJ, Kim CH, Son SW, Kim KS, Lee JH et al. Triptolide downregulates human GD3 synthase (hST8Sia I) gene expression in SK-MEL-2 human melanoma cells. Exp Mol Med 2010; 42: 849–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  37. Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res 2013; 73: 1981–1992.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hao L, Zhi-Hong L, Zhao-Hong C, Jun-Wei Y, Lei-Shi L . Triptolide a potent inhibitor of NF-kB in T lymphocytes. Acta Pharmacol Sin 2000; 21: 782–786.

    Google Scholar 

  39. Yu YH, Chen HA, Chen PS, Cheng YJ, Hsu WH, Chang YW et al. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 2013; 32: 431–443.

    CAS  PubMed  Google Scholar 

  40. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y . c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 2011; 108: 9951–9956.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiviharju TM, Lecane PS, Sellers RG, Peehl DM . Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res 2002; 8: 2666–2674.

    CAS  PubMed  Google Scholar 

  42. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the entire Mani Lab for invaluable suggestions and discussions, and Thiru Arumugam for his valuable help in animal imaging. This work was supported by an MD Anderson Research Trust Fellow Award, funded by the George and Barbara Bush Endowment for Innovative Cancer Research (SAM). Flow cytometry, confocal microscopy and animal imaging were in part funded by the Cancer Center Support Grant from the National Cancer Institute (CA16672). We also acknowledge support from the Breast Cancer Research Foundation (MA) and the Rolanette and Berdon Lawrence Research award from Bone Disease Program of Texas (VLB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Andreeff or S A Mani.

Ethics declarations

Competing interests

TRS, VLB, MA and SAM are inventors of a patent application based on the work described here. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Battula, V., Werden, S. et al. GD3 synthase regulates epithelial–mesenchymal transition and metastasis in breast cancer. Oncogene 34, 2958–2967 (2015). https://doi.org/10.1038/onc.2014.245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.245

This article is cited by

Search

Quick links