Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity

Subjects

Abstract

Mdm4, a protein related to the ubiquitin-ligase Mdm2, is an essential inhibitor of tumor suppressor protein p53. In both human and mouse cells, the Mdm4 gene encodes two major transcripts: one encodes the full-length oncoprotein (designated below as Mdm4-FL), whereas the other, resulting from a variant splicing that skips exon 6, encodes the shorter isoform Mdm4-S. Importantly, increased Mdm4-S mRNA levels were observed in several human cancers, and correlated with poor survival. However, the role of Mdm4-S in cancer progression remains controversial, because the Mdm4-S protein appeared to be a potent p53 inhibitor when overexpressed, but the splice variant also leads to a decrease in Mdm4-FL expression. To unambiguously determine the physiological impact of the Mdm4-S splice variant, we generated a mouse model with a targeted deletion of the Mdm4 exon 6, thereby creating an obligatory exon skipping. The mutant allele (Mdm4ΔE6) prevented the expression of Mdm4-FL, but also led to increased Mdm4-S mRNA levels. Mice homozygous for this allele died during embryonic development, but were rescued by a concomitant p53 deficiency. Furthermore in a hypomorphic p53ΔP/ΔP context, the Mdm4ΔE6 allele led to p53 activation and delayed the growth of oncogene-induced tumors. We next determined the effect of Mdm4+/ΔE6 heterozygosity in a hypermorphic p53+/Δ31 genetic background, recently shown to be extremely sensitive to Mdm4 activity. Mdm4+/ΔE6 p53+/Δ31 pups were born, but suffered from aplastic anemia and died before weaning, again indicating an increased p53 activity. Our results demonstrate that the main effect of a skipping of Mdm4 exon 6 is not the synthesis of the Mdm4-S protein, but rather a decrease in Mdm4-FL expression. These and other data suggest that increased Mdm4-S mRNA levels might correlate with more aggressive cancers without encoding significant amounts of a potential oncoprotein. Hypotheses that may account for this apparent paradox are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Toledo F, Wahl GM . Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  2. Marine JC . MDM2 and MDMX in cancer and development. Curr Top Dev Biol 2011; 94: 45–75.

    Article  CAS  PubMed  Google Scholar 

  3. Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M et al. A mouse p53 mutant lacking the proline rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 2006; 9: 273–285.

    Article  CAS  PubMed  Google Scholar 

  4. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006; 444: 61–66.

    Article  CAS  PubMed  Google Scholar 

  5. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 2010; 18: 411–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia D, Warr MR, Martins CP, Brown Swigart L, Passegue E, Evan GI et al. Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev 2011; 25: 1746–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  8. Fang M, Simeonova I, Bardot B, Lejour V, Jaber S, Bouarich-Bourimi R et al. Mdm4 loss in mice expressing a p53 hypomorph alters tumor spectrum without improving survival. Oncogene 2014; 33: 1336–1339.

    Article  CAS  PubMed  Google Scholar 

  9. Mancini F, Di Conza G, Moretti F . MDM4 (MDMX) and its transcript variants. Curr Genomics 2009; 10: 42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M et al. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 2010; 285: 29111–29127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rallapalli R, Strachan G, Cho B, Mercer WE, Hall DJ . A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem 1999; 274: 8299–8308.

    Article  CAS  PubMed  Google Scholar 

  12. Riemenschneider MJ, Knobbe CB, Reifenberger G . Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 2003; 104: 752–757.

    Article  CAS  PubMed  Google Scholar 

  13. Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M, Bache M et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 2005; 117: 469–475.

    Article  CAS  PubMed  Google Scholar 

  14. Prodosmo A, Giglio S, Moretti S, Mancini F, Barbi F, Avenia N et al. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med 2008; 86: 585–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AF, Repapi E et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 2012; 72: 4074–4084.

    Article  CAS  PubMed  Google Scholar 

  16. Rallapalli R, Strachan G, Tuan RS, Hall DJ . Identification of a domain within MDMX-S that is responsible for its high affinity interaction with p53 and high-level expression in mammalian cells. J Cell Biochem 2003; 89: 563–575.

    Article  CAS  PubMed  Google Scholar 

  17. Bista M, Petrovich M, Fersht AR . MDMX contains an autoinhibitory sequence element. Proc Natl Acad Sci USA 2013; 110: 17814–17819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenos K, Jochemsen AG . Functions of MDMX in the modulation of the p53-response. J Biomed Biotechnol 2011; 2011: 876173.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 2013; 27: 1903–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29: 92–95.

    Article  CAS  PubMed  Google Scholar 

  21. Migliorini D, Denchi EL, Danovi D, Jochemsen A, Capillo M, Gobbi A et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002; 22: 5527–5538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD et al. mdmx is a negative regulator of p53 activity in vivo. Cancer Res 2002; 62: 3221–3225.

    CAS  PubMed  Google Scholar 

  23. Wang YV, Leblanc M, Wade M, Jochemsen AG, Wahl GM . Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 2009; 16: 33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pant V, Xiong S, Iwakuma T, Quintas-Cardama A, Lozano G . Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci USA 2011; 108: 11995–12000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci USA 2011; 108: 12001–12006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lowe SW, Ruley HE, Jacks T, Housman DE . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  27. Simeonova I, Jaber S, Draskovic I, Bardot B, Fang M, Bouarich-Bourimi R et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep 2013; 3: 2046–2058.

    Article  CAS  PubMed  Google Scholar 

  28. Wang YV, Leblanc M, Fox N, Mao JH, Tinkum KL, Krummel K et al. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev 2011; 25: 1426–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28: 438–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steinman HA, Sluss HK, Sands AT, Pihan G, Jones SN . Absence of p21 partially rescues Mdm4 loss and uncovers an antiproliferative effect of Mdm4 on cell growth. Oncogene 2004; 23: 303–306.

    Article  CAS  PubMed  Google Scholar 

  31. Steinman HA, Hoover KM, Keeler ML, Sands AT, Jones SN . Rescue of Mdm4-deficient mice by Mdm2 reveals functional overlap of Mdm2 and Mdm4 in development. Oncogene 2005; 24: 7935–7940.

    Article  CAS  PubMed  Google Scholar 

  32. Matijasevic Z, Steinman HA, Hoover K, Jones SN . MdmX promotes bipolar mitosis to suppress transformation and tumorigenesis in p53-deficient cells and mice. Mol Cell Biol 2008; 28: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  33. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM et al. Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 2007; 8: 349–357.

    Article  CAS  PubMed  Google Scholar 

  35. Simeonova I, Lejour V, Bardot B, Bouarich-Bourimi R, Morin A, Fang M et al. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes. PLoS Genet 2012; 8: e1002731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prophet E, Mills B, Arrington J, Sobin L . Afip - Laboratory Methods in HIstotechnology. American Registry of Pathology: Washington, DC, USA, 1992.

    Google Scholar 

  37. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . et al. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 2001; 61: 1839–1842.

    CAS  PubMed  Google Scholar 

  38. Vandenbroucke II, Vandesompele J, Paepe AD, Messiaen L . Quantification of splice variants using real-time PCR. Nucleic Acids Res 2001; 29: E68–E68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Curie technological platforms for their contribution to this study: I Grandjean, C Daviaud and M Verlhac from the Animal facility, C Alberti, E Belloir and N Mebirouk from the transgenesis platform, M Richardson, A Nicolas, R Leclere and M Huerre from the pathology service. Our lab received funding as an Equipe Labellisée by the Ligue Nationale contre le Cancer. The project was initiated by grants from the Fondation de France (Comité Tumeurs), the Ligue Nationale contre le Cancer (Comité Ile de France) and the Fondation ARC. JL was supported by a post-doctoral fellowship from the Cancéropôle Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Toledo.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardot, B., Bouarich-Bourimi, R., Leemput, J. et al. Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity. Oncogene 34, 2943–2948 (2015). https://doi.org/10.1038/onc.2014.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.230

This article is cited by

Search

Quick links