Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression

Subjects

Abstract

Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4R24C and NRASQ61K. In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 2005; 41: 28–44.

    Article  PubMed  Google Scholar 

  2. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 2005; 41: 45–60.

    Article  PubMed  Google Scholar 

  3. Law MH, Macgregor S, Hayward NK . Melanoma genetics: recent findings take us beyond well-traveled pathways. J Invest Dermatol 2012; 132: 1763–1774.

    Article  CAS  PubMed  Google Scholar 

  4. Nadeau J . Modifier genes in mice and humans. Nat Rev Genet 2001; 2: 165–174.

    Article  CAS  PubMed  Google Scholar 

  5. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 2004; 36: 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  6. Morahan G, Balmer L, Monley D . Establishment of ‘The Collaborative Cross’: a resource for rapid identification of complex trait genes. Mamm Genome 2008; 19: 390–393.

    Article  PubMed  Google Scholar 

  7. Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G et al. Status and access to the Collaborative Cross population. Mamm Genome 2010; 23: 706–712.

    Article  Google Scholar 

  8. Threadgill DW, Churchill GA . Ten years of the collaborative cross. G3 (Bethesda) 2012; 2: 153–156.

    Article  Google Scholar 

  9. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 1998; 77: 640–644.

    Article  CAS  PubMed  Google Scholar 

  10. Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW et al. The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 2008; 25: 357–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW et al. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 2012; 8: e1002926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winter SF, Lukes L, Walker RC, Welch DR, Hunter KW . Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis. PLoS Genet 2012; 8: e1002735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abel EL, Angel JM, Riggs PK, Langfield L, Lo HH, Person MD et al. Evidence that Gsta4 modifies susceptibility to skin tumor development in mice and humans. J Natl Cancer Inst 2010; 102: 1663–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferguson B, Konrad Muller H, Handoko HY, Khosrotehrani K, Beermann F, Hacker E et al. Differential roles of the pRb and Arf/p53 pathways in murine naevus and melanoma genesis. Pigment Cell Melanoma Res 2010; 23: 771–780.

    Article  CAS  PubMed  Google Scholar 

  15. Wurm ET, Ferguson B, Li L, Lambie D, Walker GJ, Soyer HP et al. Histopathologic and clinical variability in melanocytic lesions developing in genetically modified Cdk4R24C/R24C::Tyr-Nras mice. Exp Dermatol 2012; 21: 676–681.

    Article  CAS  PubMed  Google Scholar 

  16. Lynch HT, Fusaro RM, Pester J, Lynch JF . Familial atypical multiple mole melanoma (FAMMM) syndrome: genetic heterogeneity and malignant melanoma. Br J Cancer 1980; 42: 58–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JH, Choi JW, Kim Y . Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 2011; 164: 776–784.

    Article  CAS  PubMed  Google Scholar 

  18. Puig S, Ruiz A, Castel T, Volpini V, Malvehy J, Cardellach F et al. Inherited susceptibility to several cancers but absence of linkage between dysplastic nevus syndrome and CDKN2A in a melanoma family with a mutation in the CDKN2A (P16INK4A) gene. Hum Genet 1997; 101: 359–364.

    Article  CAS  PubMed  Google Scholar 

  19. de Snoo FA, Hottenga JJ, Gillanders EM, Sandkuijl LA, Jones MP, Bergman W et al. Genome-wide linkage scan for atypical nevi in p16-Leiden melanoma families. Eur J Hum Genet 2008; 16: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein AM, Chidambaram A, Halpern A, Holly EA, Guerry D, Sagebiel R et al. Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res 2002; 12: 51–55.

    Article  CAS  PubMed  Google Scholar 

  21. Molven A, Grimstvedt MB, Steine SJ, Harland M, Avril MF, Hayward NK et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chrom Cancer 2005; 44: 10–18.

    Article  CAS  PubMed  Google Scholar 

  22. Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, Pastinen T et al. Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 2009; 41: 915–919.

    Article  CAS  PubMed  Google Scholar 

  23. Le Fur N, Kelsall SR, Mintz B . Base substitution at different alternative splice donor sites of the tyrosinase gene in murine albinism. Genomics 1996; 37: 245–248.

    Article  CAS  PubMed  Google Scholar 

  24. Walker GJ . Cutaneous melanoma: how does ultraviolet light contribute to melanocyte transformation? Future Oncol 2008; 4: 841–856.

    Article  PubMed  Google Scholar 

  25. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 2003; 34: 108–112.

    Article  CAS  PubMed  Google Scholar 

  26. Quigley D, Balmain A . Systems genetics analysis of cancer susceptibility: from mouse models to humans. Nat Rev Genet 2009; 10: 651–657.

    Article  CAS  PubMed  Google Scholar 

  27. Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 2008; 5: e120.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Walker GJ, Soyer HP, Terzian T, Box NF . Modelling melanoma in mice. Pigment Cell Melanoma Res 2011; 24: 158–176.

    Google Scholar 

  29. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Campagne C, Reyes-Gomez E, Battistella M, Bernex F, Château-Joubert S, Huet H et al. Histopathological atlas and proposed classification for melanocytic lesions in Tyr::NRas(Q61K);Cdkn2a(−/−) transgenic mice. Pigment Cell Melanoma Res 2013; 26: 735–742.

    Article  CAS  PubMed  Google Scholar 

  31. Landsberg J, Gaffal E, Cron M, Kohlmeyer J, Renn M, Tüting T et al. Autochthonous primary and metastatic melanomas in Hgf-Cdk4 R24C mice evade T-cell-mediated immune surveillance. Pigment Cell Melanoma Res 2010; 23: 649–660.

    Article  CAS  PubMed  Google Scholar 

  32. Chai E, Ferguson B, Prow T, Soyer HP, Walker GJ . Three-dimensional modelling for estimation of nevus count and probability of nevus-melanoma progression in a murine model. Pigment Cell Melanoma Res 2013; 27: 317–319.

    Article  PubMed  Google Scholar 

  33. Rigel DS . Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol 2008; 58: S129–S132.

    Article  PubMed  Google Scholar 

  34. Whiteman DC, Watt P, Purdie DM, Hughes MC, Hayward NK, Green AC et al. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 2003; 95: 806–812.

    Article  PubMed  Google Scholar 

  35. Aoki H, Hara A, Motohashi T, Kunisada K . Functionally distinct melanocyte populations revealed by reconstitution of hair follicles in mice. Pigment Cell Melanoma Res 2011; 24: 125–135.

    Article  PubMed  Google Scholar 

  36. Bradish JR, Montironi R, Lopez-Beltran A, Post KM, MacLennan GT, Cheng L et al. Towards personalized therapy for patients with malignant melanoma: molecular insights into the biology of BRAF mutations. Future Oncol 2013; 9: 245–253.

    Article  CAS  PubMed  Google Scholar 

  37. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 1999; 22: 44–52.

    Article  CAS  PubMed  Google Scholar 

  38. Ackermann J, Frutschi M, Kaloulis K, Mckee T, Trumpp A, Beermann F et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 2005; 65: 4005–4011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a pilot study grant from the Melanoma Research Alliance, Washington DC, USA and a Discovery Research Priming Grant from the Scott Kirkbride Melanoma Research Centre, Perth, Western Australia. GM is supported by the Diabetes Research Foundation of Western Australia, by Australian Research Council Project DP11010206 and by Program Grant 1037321 from the National Health and Medical Research Council of Australia. RR is supported by RTCC funding from the Ride To Cure Cancer, Western Australia. We thank Geniad Pty Ltd for providing mice from the Collaborative Cross strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Walker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, B., Ram, R., Handoko, H. et al. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression. Oncogene 34, 2879–2886 (2015). https://doi.org/10.1038/onc.2014.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.227

This article is cited by

Search

Quick links