Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling

A Corrigendum to this article was published on 06 August 2015

Abstract

Surfactant protein D (SP-D) is a member of the collectin family that has an important role in maintaining pulmonary homeostasis. In this study, we demonstrated that SP-D inhibited the proliferation, migration and invasion of A549 human lung adenocarcinoma cells. We found that SP-D suppressed epidermal growth factor (EGF) signaling in A549 cells, H441 human lung adenocarcinoma cells and human EGF receptor (EGFR) stable expression CHO-K1 cells. A binding study using 125I-EGF demonstrated that SP-D downregulated the binding of EGF to EGFR. A ligand blot indicated that SP-D bound to EGFR, and a lectin blot suggested that EGFR in A549 cells had both high-mannose type and complex type N-glycans. We purified the recombinant extracellular domain of EGFR (soluble EGFR=soluble EGFR (sEGFR)), and demonstrated that SP-D directly bound to sEGFR in a Ca2+-dependent manner. The binding of SP-D to sEGFR was suppressed by EDTA, mannose or N-glycopeptidase F treatment. Mass spectrometric analysis indicated that N-glycans in domain III of EGFR were of a high-mannose type. These data suggest that SP-D reduces EGF binding to EGFR through the interaction between the carbohydrate recognition domain of SP-D and N-glycans of EGFR, and downregulates EGF signaling. Our finding suggests the novel type of regulation system of EGF signaling involving lectin-to-carbohydrate interaction and downregulation of ligand binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Whitsett JA, Weaver TE . Hydrophobic surfactant proteins in lung function and disease. New Engl J Med 2002; 347: 2141–2148.

    Article  Google Scholar 

  2. Kuroki Y, Takahashi M, Nishitani C . Pulmonary collectins in innate immunity of the lung. Cell Microbiol 2007; 9: 1871–1879.

    Article  CAS  Google Scholar 

  3. Wright JR . Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 2005; 5: 58–68.

    Article  CAS  Google Scholar 

  4. Kingma PS, Whitsett JA . In defense of the lung: surfactant protein A and surfactant protein D. Curr Opin Pharmacol 2006; 6: 277–283.

    Article  CAS  Google Scholar 

  5. Sahly H, Ofek I, Podschun R, Brade H, He Y, Ullmann U et al. Surfactant protein D binds selectively to Klebsiella pneumoniae lipopolysaccharides containing mannose-rich O-antigens. J Immunol 2002; 169: 3267–3274.

    Article  CAS  Google Scholar 

  6. Wu H, Kuzmenko A, Wan S, Schaffer L, Weiss A, Fisher JH et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest 2003; 111: 1589–1602.

    Article  CAS  Google Scholar 

  7. Ariki S, Kojima T, Gasa S, Saito A, Nishitani C, Takahashi M et al. Pulmonary collectins play distinct roles in host defense against Mycobacterium avium. J Immunol 2011; 187: 2586–2594.

    Article  CAS  Google Scholar 

  8. Restrepo CI, Dong Q, Savov J, Mariencheck WI, Wright JR . Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am J Respir Cell Mol Biol 1999; 21: 576–585.

    Article  CAS  Google Scholar 

  9. Kudo K, Sano H, Takahashi H, Kuronuma K, Yokota S, Fujii N et al. Pulmonary collectins enhance phagocytosis of Mycobacterium avium through increased activity of mannose receptor. J Immunol 2004; 172: 7592–7602.

    Article  CAS  Google Scholar 

  10. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T et al. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 2006; 45: 8657–8664.

    Article  CAS  Google Scholar 

  11. Nie X, Nishitani C, Yamazoe M, Ariki S, Takahashi M, Shimizu T et al. Pulmonary surfactant protein D binds MD-2 through the carbohydrate recognition domain. Biochemistry 2008; 47: 12878–12885.

    Article  CAS  Google Scholar 

  12. Yamazoe M, Nishitani C, Takahashi M, Katoh T, Ariki S, Shimizu T et al. Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)-induced inflammatory cell responses by altering LPS binding to its receptors. J Biol Chem 2008; 283: 35878–35888.

    Article  CAS  Google Scholar 

  13. Lin Z, Thomas NJ, Bibikova M, Seifart C, Wang Y, Guo X et al. DNA methylation markers of surfactant proteins in lung cancer. Int J Oncol 2007; 31: 181–191.

    CAS  PubMed  Google Scholar 

  14. Ishii T, Hagiwara K, Ikeda S, Arai T, Mieno MN, Kumasaka T et al. Association between genetic variations in surfactant protein d and emphysema, interstitial pneumonia, and lung cancer in a Japanese population. COPD 2012; 9: 409–416.

    Article  Google Scholar 

  15. Sin DD, Man SF, McWilliams A, Lam S . Surfactant protein D and bronchial dysplasia in smokers at high risk of lung cancer. Chest 2008; 134: 582–588.

    Article  Google Scholar 

  16. Dawson JP, Bu Z, Lemmon MA . Ligand-induced structural transitions in ErbB receptor extracellular domains. Structure 2007; 15: 942–954.

    Article  CAS  Google Scholar 

  17. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  18. Oxnard GR, Arcila ME, Chmielecki J, Ladanyi M, Miller VA, Pao W . New strategies in overcoming acquired resistance to epidermal growth factorreceptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res 2011; 17: 5530–5537.

    Article  CAS  Google Scholar 

  19. Hrustanovic G, Lee BJ, Bivona TG . Mechanisms of resistance to EGFR targeted therapies. Cancer Biol Ther 2013; 14: 304–314.

    Article  CAS  Google Scholar 

  20. Macdonald JL, Pike LJ . Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system. Proc Natl Acad Sci USA 2008; 105: 112–117.

    Article  CAS  Google Scholar 

  21. Alvarado D, Klein DE, Lemmon MA . Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 2010; 142: 568–579.

    Article  CAS  Google Scholar 

  22. Soderquist AM, Carpenter G . Glycosylation of the epidermal growth factorreceptor in A-431 cells. The contribution of carbohydrate to receptor function. J Biol Chem 1984; 259: 12586–12594.

    CAS  PubMed  Google Scholar 

  23. Bremer EG, Schlessinger J, Hakomori S . Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factorreceptor. J Biol Chem 1986; 261: 2434–2440.

    CAS  PubMed  Google Scholar 

  24. Tsuda T, Ikeda Y, Taniguchi N . The Asn-420-linked sugar chain in human epidermal growth factorreceptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J Biol Chem 2000; 275: 21988–21994.

    Article  CAS  Google Scholar 

  25. Sato Y, Takahashi M, Shibukawa Y, Jain SK, Hamaoka R, Miyagawa Ji et al. Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J Biol Chem 2001; 276: 11956–11962.

    Article  CAS  Google Scholar 

  26. Wang XQ, Sun P, O'Gorman M, Tai T, Paller AS . Epidermal growth factorreceptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppression [correction of suppresion] of activation. Glycobiology 2001; 11: 515–522.

    Article  CAS  Google Scholar 

  27. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 2004; 306: 120–124.

    Article  CAS  Google Scholar 

  28. Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI . Epidermal growth factorreceptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 2006; 103: 18987–18991.

    Article  CAS  Google Scholar 

  29. Kawashima N, Yoon SJ, Itoh K, Nakayama K . Tyrosine kinase activity of epidermal growth factorreceptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 2009; 284: 6147–6155.

    Article  CAS  Google Scholar 

  30. Smith KD, Davies MJ, Bailey D, Renouf DV, Hounsell EF . Analysis of the glycosylation patterns of the extracellular domain of the epidermal growth factorreceptor expressed in Chinese hamster ovary fibroblasts. Growth Factors 1996; 13: 121–132.

    Article  CAS  Google Scholar 

  31. Honda Y, Kuroki Y, Matsuura E, Nagae H, Takahashi H, Akino T et al. Pulmonary surfactant protein D in sera and bronchoalveolar lavagefluids. Am J Respir Crit Care Med 1995; 152: 1860–1866.

    Article  CAS  Google Scholar 

  32. Hubbard R, Venn A, Lewis S, Britton J . Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 2000; 161: 5–8.

    Article  CAS  Google Scholar 

  33. Aubry MC, Myers JL, Douglas WW, Tazelaar HD, Washington Stephens TL, Hartman TE et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clin Proc 2002; 77: 763–770.

    Article  Google Scholar 

  34. Park J, Kim DS, Shim TS, Lim CM, Koh Y, Lee SD et al Lung cancer in patients with idiopathic pulmonary fibrosis. Eur Respir J 2001; 17: 1216–1219.

    Article  CAS  Google Scholar 

  35. Betz C, Papadopoulos T, Buchwald J, Dämmrich J, Müller-Hermelink HK . Surfactant protein gene expression in metastatic and micrometastatic pulmonary adenocarcinomas and other non-small cell lungcarcinomas: detection by reverse transcriptase-polymerase chain reaction. Cancer Res 1995; 55: 4283–4286.

    CAS  PubMed  Google Scholar 

  36. Takahashi H, Kuroki Y, Honda Y, Shijubo N, Hirasawa M, Fujishima T et al. Lipid analysis and surfactant-associated protein expression in lung adenocarcinoma cells from pleural effusion. Respiration 1996; 63: 390–396.

    Article  CAS  Google Scholar 

  37. Qi ZL, Xiao L, Gao YT, Du JM, Jing L . Expression and clinical significance of surfactant protein D mRNA in peripheral blood of lung cancer patients. Ai Zheng 2002; 21: 772–775.

    PubMed  Google Scholar 

  38. Mason RJ, Kalina M, Nielsen LD, Malkinson AM, Shannon JM . Surfactant protein C expression in urethane-induced murine pulmonary tumors. Am J Pathol 2000; 156: 175–182.

    Article  CAS  Google Scholar 

  39. Zhang F, Pao W, Umphress S, Jakowlew S, Meyer AM, Dwyer-Nield LD et al. Serum levels of surfactant protein D are increased in mice with lung tumors. Chest 2004; 125: 109S.

    Article  CAS  Google Scholar 

  40. Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D, Kenaga L et al. Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J Appl Physiol 1995; 79: 1615–1628.

    Article  CAS  Google Scholar 

  41. Rennard SI, Basset G, Lecossier D, O'Donnell KM, Pinkston P, Martin PG et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986; 60: 532–538.

    Article  CAS  Google Scholar 

  42. Tino MJ, Wright JR . Surfactant proteins A and D specifically stimulate directed actin-based responses in alveolar macrophages. Am J Physiol 1999; 276: L164–L174.

    CAS  PubMed  Google Scholar 

  43. Wright JR . Immunomodulatory functions of surfactant. Physiol Rev 1997; 77: 931–962.

    Article  CAS  Google Scholar 

  44. Nagae H, Takahashi H, Kuroki Y, Honda Y, Nagata A, Ogasawara Y et al. Enzyme-linked immunosorbent assay using F(ab')2 fragment for the detection of human pulmonary surfactant protein D in sera. Clin Chim Acta 1997; 266: 157–171.

    Article  CAS  Google Scholar 

  45. Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C et al. Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 2010; 285: 8434–8443.

    Article  CAS  Google Scholar 

  46. Takahashi M, Hasegawa Y, Ikeda Y, Wada Y, Tajiri M, Ariki S et al. Suppression of heregulin beta signaling by the single N-glycan deletion mutant of soluble ErbB3 protein. J Biol Chem 2013; 288: 32910–32921.

    Article  CAS  Google Scholar 

  47. Wada Y, Tajiri M, Yoshida S . Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 2004; 76: 6560–6565.

    Article  CAS  Google Scholar 

  48. Tajiri M, Yoshida S, Wada Y . Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005; 15: 1332–1340.

    Article  CAS  Google Scholar 

  49. Tajiri M, Kadoya M, Wada Y . Dissociation profile of protonated fucosyl glycopeptides and quantitation of fucosylation levels of glycoproteins by mass spectrometry. J Proteome Res 2009; 8: 688–693.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Science Research from the Japan Society for the Promotion of Science, grants from the Takeda Science Foundation and from the Suhara Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Takahashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, Y., Takahashi, M., Ariki, S. et al. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Oncogene 34, 838–845 (2015). https://doi.org/10.1038/onc.2014.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.20

This article is cited by

Search

Quick links