Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CXCL12-γ in primary tumors drives breast cancer metastasis

Subjects

Abstract

Compelling evidence shows that chemokine C-X-C motif chemokine ligand 12 (CXCL12) drives metastasis in multiple malignancies. Similar to other key cytokines in cancer, CXCL12 exists as several isoforms with distinct biophysical properties that may alter signaling and functional outputs. However, effects of CXCL12 isoforms in cancer remain unknown. CXCL12-α, -β and -γ showed cell-type-specific differences in activating signaling through G protein-dependent pathways in cell-based assays, while CXCL12-γ had greatest effects on recruitment of the adapter protein β-arrestin 2. CXCL12-β and -γ also stimulated endothelial tube formation to a greater extent than CXCL12-α. To investigate the effects of CXCL12 isoforms on tumor growth and metastasis, we used a mouse xenograft model of metastatic human breast cancer combining CXCR4+ breast cancer cells and mammary fibroblasts secreting an isoform of CXCL12. Altough all CXCL12 isoforms produced comparable growth of mammary tumors, CXCL12-γ significantly increased metastasis to bone marrow and other sites. Breast cancer cells originating from tumors with CXCL12-γ fibroblasts upregulated RANKL (receptor activator of nuclear factor-κB ligand), contributing to bone marrow tropism of metastatic cancer cells. CXCL12-γ was expressed in metastatic tissues in mice, and we also detected CXCL12-γ in malignant pleural effusions from patients with breast cancer. In our mouse model, mammary fibroblasts disseminated to sites of breast cancer metastases, providing another mechanism to increase levels of CXCL12 in metastatic environments. These studies identify CXCL12-γ as a potent pro-metastatic molecule with important implications for cancer biology and effective therapeutic targeting of CXCL12 pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lu P, Weaver V, Werb Z . The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 2012; 196: 395–406.

    Article  CAS  Google Scholar 

  2. Nguyen D, Bos P, Massague J . Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–285.

    Article  CAS  Google Scholar 

  3. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 2012; 21: 642–654.

    Article  CAS  Google Scholar 

  4. Peinado H, Aleckovic M, Lovotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–891.

    Article  CAS  Google Scholar 

  5. Sceneay J, Smyth M, Moller A . The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 2013; 32: 449–464.

    Article  CAS  Google Scholar 

  6. Orimo A, Gupta P, Sgroi D, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  Google Scholar 

  7. Zhang X, Jin X, Malladi S, Zou Y, Wen Y, Brogi E et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013; 154: 1060–1073.

    Article  CAS  Google Scholar 

  8. Duda D, Duyverman A, Kohno M, Snuder M, Steller E, Fukumura D et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA 2010; 107: 21677–21682.

    Article  CAS  Google Scholar 

  9. Padua D, Zhang X, Wang Q, Nadal C, Gerald W, Gomis R et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133: 66–77.

    Article  CAS  Google Scholar 

  10. Erler J, Bennewith K, Cox T, Lang G, Bird D, Koong A et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche. Cancer Cell. 2009; 15: 35–44.

    Article  CAS  Google Scholar 

  11. Luker K, Luker G . Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 2006; 238: 30–41.

    Article  CAS  Google Scholar 

  12. Duda D, Kozin S, Kirkpatrick N, Xu L, Fukumura D, Jain R . CXCL12 (SDF1{alpha})—CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anti-cancer therapies? Clin Cancer Res 2011; 17: 2074–2080.

    Article  CAS  Google Scholar 

  13. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanon M et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  Google Scholar 

  14. Smith M, Luker K, Garbow J, Prior J, Jackson E, Piwnica-Worms D et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004; 64: 8604–8612.

    Article  CAS  Google Scholar 

  15. Zhang S, Han Z, Jing Y, Tao S, Li T, Wang H et al. CD133+CXCR4+ colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med 2012; 10: 85.

    Article  Google Scholar 

  16. Jung Y, Kim J, Shiozawa Y, Wang J, Mishra A, Joseph J et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 2013; 4: 1795.

    Article  Google Scholar 

  17. Zetter B . Angiogenesis and tumor metastasis. Ann Rev Med 1998; 49: 407–424.

    Article  CAS  Google Scholar 

  18. Guo P, Xu L, Pan S, Brekken R, Yang S, Whitaker G et al. Vascular endothelial growth factor isoforms display distinct activities in promoting tumor angiogenesis at different anatomic sites. Cancer Res 2001; 61: 8569–8577.

    CAS  Google Scholar 

  19. Kloen P, Gebhardt M, Perez-Atayde A, Rosenberg A, Springfield D, Gold L et al. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer 1997; 80: 2230–2239.

    Article  CAS  Google Scholar 

  20. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara K et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 1995; 28: 495–500.

    Article  CAS  Google Scholar 

  21. Yu L, Cecil J, Peng S, Schrementi J, Kovacevic S, Paul D et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene 2006; 374: 174–179.

    Article  CAS  Google Scholar 

  22. Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F et al. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One 2007; 2: e1110.

    Article  Google Scholar 

  23. Stumm R, Kolodziej A, Schulz S, Kohtz J, Hollt V . Patterns of SDF-1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon. J Comp Neurol 2007; 502: 382–399.

    Article  CAS  Google Scholar 

  24. Gahan J, Gasalbez M, Yates T, Young E, Escudero D, Chi A et al. Chemokine and chemokine receptor expression in kidney tumors: molecular profiling of histological subtypes and association with metastasis. J Urol 2012; 187: 827–833.

    Article  CAS  Google Scholar 

  25. Park H, Min S, Cho H, Kim D, Shin H, Park Y . Expression of osteoprotegerin and RANK ligand in breast cancer bone metastasis. J Korean Med Sci 2003; 18: 541–546.

    Article  CAS  Google Scholar 

  26. Luker K, Gupta M, Luker G . Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7. Biotechniques 2009; 47: 625–632.

    Article  CAS  Google Scholar 

  27. Cavnar S, Ray P, Moudgil P, Chang S, Luker K, Linderman J et al. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12-isoforms in breast cancer chemotaxis. Integr Biol 2014; 6: 564–576.

    Article  CAS  Google Scholar 

  28. Luker K, Gupta M, Luker G . Imaging CXCR4 signaling with firefly luciferase complementation. Anal Chem 2008; 80: 5565–5573.

    Article  CAS  Google Scholar 

  29. Salcedo R, Oppenheim J . Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 2003; 10: 359–370.

    Article  CAS  Google Scholar 

  30. Ho T, Tsui J, Xu S, Abraham D, Baker D . Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. J Vasc Surg 2010; 51: 689–699.

    Article  Google Scholar 

  31. Luker K, Gupta M, Steele J, Foerster B, Luker G . Imaging ligand-dependenta activation of CXCR7. Neoplasia 2009; 11: 1022–1035.

    Article  CAS  Google Scholar 

  32. Brown J, Zhang J, Keller E . Opg, RANKL, and RANK in cancer metastasis: expression and regulation. Cancer Treat Res 2004; 118: 149–172.

    Article  CAS  Google Scholar 

  33. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 1999; 25: 517–523.

    Article  CAS  Google Scholar 

  34. Rueda P, Richart A, Recalde A, Gasse P, Vilar J, Guerin C et al. Homeostatic and tissue reparation defecs in mice carrying selective genetic invalidation of CXCL12/proteolycan interactions. Circulation 2012; 126: 1882–1895.

    Article  CAS  Google Scholar 

  35. Altenburg J, Broxmeyer H, Jin Q, Cooper S, Basu S, Alkhatib G . A naturally occurring splice variant of CXCL12/stromal cell-derived factor 1 is a potent human immunodeficiency virus type 1 inhibitor with weak chemotaxis and cell survival activities. J Virol 2007; 81: 8140–8148.

    Article  CAS  Google Scholar 

  36. Rueda P, Balabanian K, Lagane B, Staropoli I, Chow K, Levoye A et al. The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS One 2008; 3: e2543.

    Article  Google Scholar 

  37. Zannettino A, Farrugia A, Kortesidis A, Manavis J, To L, Martin S et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 2005; 65: 1700–1709.

    Article  CAS  Google Scholar 

  38. Kim H, Kim K, Kim B, Jung H, Cho M, Lee S . Reciprocal activation of CD4+T cells and synovial fibroblasts by SDF-1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheum 2013; 66: 538–548.

    Article  Google Scholar 

  39. Luker K, Lewin S, Mihalko L, Schmidt B, Winkler J, Coggins N et al. Scavenging of CXCL12 by CXCR7 regulates tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012; 31: 4570–4578.

    Article  Google Scholar 

  40. Venkiteswaran G, Lewellis S, Wang J, Reynolds E, Nicholson C, Knaut H . Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell 2013; 155: 674–687.

    Article  CAS  Google Scholar 

  41. Dona E, Barry J, Valentin G, Quirin C, Khmelinskii A, Kunze A et al. Directional tissue migration through a self-generated chemokine gradient. Nature 2013; 503: 285–289.

    Article  CAS  Google Scholar 

  42. Odemis Y, Lipfert J, Kraft R, Hajek P, Abraham G, Hattermann K et al. The presumed atypical chemokine receptor CXCR7 signals through G(i/o) proteins in primary rodent astrocytes and human glioma cells. Glia 2012; 60: 372–381.

    Article  Google Scholar 

  43. Rajagopal S, Kim J, Ahn S, Craig S, Lam C, Gerard N et al. Beta-arrestin- but not G protein-mediated signaling by the ‘decoy’ receptor CXCR7. Proc Natl Acad Sci USA 2010; 107: 628–632.

    Article  Google Scholar 

  44. Levesque J-P, Hendy J, Takamatsu Y, Simmons P, Bendall L . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  Google Scholar 

  45. Diamond P, Labrinidis A, Martin S, Farrugia A, Gronthos S, To L et al. Targeted disruption of the CXCL12/CXCR4 axis inhibits osteolysis in a murine model of myeloma-associated bone loss. J Bone Miner Res 2009; 24: 1150–1161.

    Article  CAS  Google Scholar 

  46. Shu H, Yoon Y, Hong S, Xu K, Gao H, Hao C et al. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis. PLoS One 2013; 8: e79768.

    Article  CAS  Google Scholar 

  47. Chu Q, Panu L, Holm N, Li B, Johnson L, Zhang S . High chemokine receptor CXCR4 level in triple negative breast cancer specimens predicts poor clinical outcome. J Surg Res 2010; 159: 689–695.

    Article  CAS  Google Scholar 

  48. Chueh B, Huh D, Kyrtsos C, Houssin T, Futai N, Takayama S . Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 2007; 79: 3504–3508.

    Article  CAS  Google Scholar 

  49. Ebos J, Lee C, Christensen J, Mutsaers A, Kerbel R . Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 2007; 104: 17069–17074.

    Article  CAS  Google Scholar 

  50. Holland J, Gyorffy B, Vogel R, Eckert K, Valenti G, Fang L et al. Combined Wnt/β-catenin, met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep 2013; pii S2211-1247: 00649–00649.

    Google Scholar 

  51. Nixon A, Pang H, Starr M, Friedman P, Bertagnoli M, Kindler H et al. Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303 (Alliance). Clin Cancer Res 2013; 19: 6957–6966.

    Article  CAS  Google Scholar 

  52. Song J, Cavnar S, Walker A, Luker K, Gupta M, Tung Y et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 4: e5756.

    Article  Google Scholar 

  53. Lois C, Hong E, Pease S, Brown E, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  Google Scholar 

  54. Shcherbo D, Shemiakina I, Ryabova A, Luker K, Schmidt B, Souslova E et al. Near infrared fluorescent proteins. Nat Methods 2010; 7: 827–829.

    Article  CAS  Google Scholar 

  55. Ray P, Mihalko L, Coggins N, Moudgil P, Ehrlich A, Luker K et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int J Biochem Cell Biol 44: 669–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States National Institutes of Health grants R01CA136553, R01CA136829, R01CA142750 and P50CA093990. SPC was supported by an NSF predoctoral fellowship. Research was also supported by Fashion Footwear Association of New York (FFANY)/QVC presents Shoes on Sale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Luker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P., Stacer, A., Fenner, J. et al. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene 34, 2043–2051 (2015). https://doi.org/10.1038/onc.2014.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.157

This article is cited by

Search

Quick links