Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT

Abstract

The dual role of the microRNA-29 (miR-29) family in tumor progression and metastasis in solid tumors has been reported. Evidence for the role of miR-29 in tumor malignancy and its prognostic value in overall survival (OS) and relapse-free survival (RFS) in non-small cell lung cancer (NSCLC) remains conflicting. Mechanistic studies presented herein demonstrated that c-Myc suppressed the expression of miR-29b, promoting soft agar growth and invasion capability in lung cancer cells. Interestingly, the decrease in the expression of miR-29b by c-Myc is responsible for soft agar growth and invasiveness mediated by FHIT loss due to promoter methylation. Among patients, low expression of miR-29b and FHIT was more common in tumors with high c-Myc expression than in tumors with low c-Myc expression. Kaplan–Meier and Cox regression analysis showed that tumors with high c-Myc, low miR-29b and low FHIT expression had shorter OS and RFS periods than their counterparts. In conclusion, the decrease in the expression of miR-29b by c-Myc may be responsible for FHIT loss-mediated tumor aggressiveness and for poor outcome in NSCLC. Therefore, we suggest that restoration of the miR-29b expression using the c-Myc inhibitor might be helpful in suppressing tumor aggressiveness mediated by FHIT loss and consequently improving outcomes in NSCLC patients with tumors with low expression of FHIT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010; 51: 836–845.

    CAS  PubMed  Google Scholar 

  2. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104: 15805–15810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 2011; 224: 484–495.

    Article  CAS  PubMed  Google Scholar 

  4. Yu PN, Yan MD, Lai HC, Huang RL, Chou YC, Lin WC et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer 2013; 134: 542–551.

    Article  PubMed  Google Scholar 

  5. Rothschild SI, Tschan MP, Federzoni EA, Jaggi R, Fey MF, Gugger M et al. MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene 2012; 31: 4221–4232.

    Article  CAS  PubMed  Google Scholar 

  6. Plaisier CL, Pan M, Baliga NS . A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 2012; 22: 2302–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gebeshuber Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30: 4750–4756.

    Article  Google Scholar 

  8. Gebeshuber CA, Zatloukal K, Martinez J . miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009; 10: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kong G, Zhang J, Zhang S, Shan C, Ye L, Zhang X . Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS ONE 2011; 6: e19518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin B, Robertson KD . DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 2013; 754: 3–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee YC, Wu CT, Shih JY, Jou YS, Chang YL . Frequent allelic deletion at the FHIT locus associated with p53 overexpression in squamous cell carcinoma subtype of Taiwanese non-small-cell lung cancers. Br J Cancer 2004; 90: 2378–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim JS, Kim H, Shim YM, Han J, Park J, Kim DH . Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis 2004; 25: 2165–2171.

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Cheng YW, Wu DW, Chen JT, Chen CY, Chou MC et al. Frequent FHIT gene loss of heterozygosity in human papillomavirus-infected non-smoking female lung cancer in Taiwan. Cancer Lett 2006; 235: 18–25.

    Article  CAS  PubMed  Google Scholar 

  14. Yoon SO . Abnormal fragile histidine triad (Fhit) expression in invasive cervical adenocarcinoma: association with tumor aggressiveness. Hum Pathol 2007; 38: 326–331.

    Article  CAS  PubMed  Google Scholar 

  15. Connolly DC, Greenspan DL, Wu R, Ren X, Dunn RL, Shah KV et al. Loss of fhit expression in invasive cervical carcinomas and intraepithelial lesions associated with invasive disease. Clin Cancer Res 2000; 6: 3505–3510.

    CAS  PubMed  Google Scholar 

  16. Butler D, Collins C, Mabruk M, Barry Walsh C, Leader MB, Kay EW . Deletion of the FHIT gene in neoplastic and invasive cervical lesions is related to high-risk HPV infection but is independent of histopathological features. J Pathol 2000; 192: 502–510.

    Article  CAS  PubMed  Google Scholar 

  17. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    CAS  PubMed  Google Scholar 

  18. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME . Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong JN, Yu J, Lin HS, Zhang XH, Yin XL, Xiao Z et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ 2014; 21: 100–112.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 2012; 22: 506–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McMurray HR, McCance DJ . Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol 2003; 77: 9852–9861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu M, Katzenellenbogen RA, Grandori C, Galloway DA . NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity. J Virol 2010; 84: 11461–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. James MA, Lee JH, Klingelhutz AJ . Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol 2006; 80: 5301–5307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pylkkanen L, Wolff H, Stjernvall T, Tuominen P, Sioris T, Karjalainen A et al. Reduced Fhit protein expression and loss of heterozygosity at FHIT gene in tumours from smoking and asbestos-exposed lung cancer patients. Int J Oncol 2002; 20: 285–290.

    CAS  PubMed  Google Scholar 

  25. Burke L, Khan MA, Freedman AN, Gemma A, Rusin M, Guinee DG et al. Allelic deletion analysis of the FHIT gene predicts poor survival in non-small cell lung cancer. Cancer Res 1998; 58: 2533–2536.

    CAS  PubMed  Google Scholar 

  26. Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar AF . Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer 2004; 100: 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  27. Pavelic K, Krizanac S, Cacev T, Hadzija MP, Radosevic S, Crnic I et al. Aberration of FHIT gene is associated with increased tumor proliferation and decreased apoptosis-clinical evidence in lung and head and neck carcinomas. Mol Med 2001; 7: 442–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomizawa Y, Nakajima T, Kohno T, Saito R, Yamaguchi N, Yokota J . Clinicopathological significance of Fhit protein expression in stage I non-small cell lung carcinoma. Cancer Res 1998; 58: 5478–5483.

    CAS  PubMed  Google Scholar 

  29. Tseng JE, Kemp BL, Khuri FR, Kurie JM, Lee JS, Zhou X et al. Loss of Fhit is frequent in stage I non-small cell lung cancer and in the lungs of chronic smokers. Cancer Res 1999; 59: 4798–4803.

    CAS  PubMed  Google Scholar 

  30. Kim JS, Kim JW, Han J, Shim YM, Park J, Kim DH . Cohypermethylation of p16 and FHIT promoters as a prognostic factor of recurrence in surgically resected stage I non-small cell lung cancer. Cancer Res 2006; 66: 4049–4054.

    Article  CAS  PubMed  Google Scholar 

  31. Wu DW, Tsai LH, Chen PM, Lee MC, Wang L, Chen CY et al. Loss of TIMP-3 promotes tumor invasion via elevated IL-6 production and predicts poor survival and relapse in HPV-infected non-small cell lung cancer. Am J Pathol 2012; 181: 1796–1806.

    Article  CAS  PubMed  Google Scholar 

  32. Wu MF, Cheng YW, Lai JC, Hsu MC, Chen JT, Liu WS et al. Frequent p16INK4a promoter hypermethylation in human papillomavirus-infected female lung cancer in Taiwan. Int J Cancer 2005; 113: 440–445.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng YW, Wu MF, Wang J, Yeh KT, Goan YG, Chiou HL et al. Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 2007; 67: 10686–10693.

    Article  CAS  PubMed  Google Scholar 

  34. Okuyama H, Endo H, Akashika T, Kato K, Inoue M . Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 2010; 70: 10213–10223.

    Article  CAS  PubMed  Google Scholar 

  35. Jamerson MH, Johnson MD, Dickson RB . Dual regulation of proliferation and apoptosis: c-myc in bitransgenic murine mammary tumor models. Oncogene 2000; 19: 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  36. Napoli C, Lerman LO, de Nigris F, Sica V . c-Myc oncoprotein: a dual pathogenic role in neoplasia and cardiovascular diseases? Neoplasia 2002; 4: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robson S, Pelengaris S, Khan M . c-Myc and downstream targets in the pathogenesis and treatment of cancer. Recent Pat Anticancer Drug Discov 2006; 1: 305–326.

    Article  CAS  PubMed  Google Scholar 

  38. Wolfer A, Ramaswamy S . MYC and metastasis. Cancer Res 2011; 71: 2034–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu DW, Cheng YW, Wang J, Chen CY, Lee H . Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res 2010; 70: 10392–10401.

    Article  CAS  PubMed  Google Scholar 

  40. Kristensen LS, Mikeska T, Krypuy M, Dobrovic A . Sensitive meltings analysis after real time- methylation specific pcr (smart-msp): high-throughput and probe-free quantitative dna methylation detection. Nucleic Acids Res 2008; 36: e42.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Treppendahl MB, Qiu X, Sogaard A, Yang X, Nandrup-Bus C, Hother C et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood 2012; 119: 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the National Health Research Institute (NHRI96-TD-G-111-006; NHRI97-TD-G-111-006) and the National Science Council(100-2314-B-038-043-MY3) of Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DW., Hsu, NY., Wang, YC. et al. c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT. Oncogene 34, 2072–2082 (2015). https://doi.org/10.1038/onc.2014.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.152

This article is cited by

Search

Quick links