Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts

Abstract

The stromal compartment surrounding epithelial-derived pancreatic tumors is thought to have a key role in the aggressive phenotype of this malignancy. Emerging evidence suggests that cancer-associated fibroblasts (CAFs), the most abundant cells in the stroma of pancreatic tumors, contribute to the tumor’s invasion, metastasis and resistance to therapy, but the precise molecular mechanisms that regulate CAFs behavior are poorly understood. In this study, we utilized immortalized human pancreatic CAFs to investigate molecular pathways that control the matrix-remodeling and invasion-promoting activity of CAFs. We showed previously that palladin, an actin-associated protein, is expressed at high levels in CAFs of pancreatic tumors and other solid tumors, and also in an immortalized line of human CAFs. In this study, we found that short-term exposure of CAFs to phorbol esters reduced the number of stress fibers and triggered the appearance of individual invadopodia and invadopodial rosettes in CAFs. Molecular analysis of invadopodia revealed that their composition resembled that of similar structures (that is, invadopodia and podosomes) described in other cell types. Pharmacological inhibition and small interfering RNA knockdown experiments demonstrated that protein kinase C, the small GTPase Cdc42 and palladin were necessary for the efficient assembly of invadopodia by CAFs. In addition, GTPase activity assays showed that palladin contributes to the activation of Cdc42. In mouse xenograft experiments using a mixture of CAFs and tumor cells, palladin expression in CAFs promoted the rapid growth and metastasis of human pancreatic tumor cells. Overall, these results indicate that high levels of palladin expression in CAFs enhance their ability to remodel the extracellular matrix by regulating the activity of Cdc42, which in turn promotes the assembly of matrix-degrading invadopodia in CAFs and tumor cell invasion. Together, these results identify a novel molecular signaling pathway that may provide new molecular targets for the inhibition of pancreatic cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225–249.

    Article  PubMed  Google Scholar 

  2. Bhowmick NA, Neilson EG, Moses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Egeblad M, Littlepage LE, Werb Z . The fibroblastic coconspirator in cancer progression. Cold Spring Harb Symp Quant Biol 2005; 70: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orimo A, Weinberg RA . Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006; 5: 1597–1601.

    Article  CAS  PubMed  Google Scholar 

  5. Radisky DC, Kenny PA, Bissell MJ . Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 2007; 101: 830–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Wever O, Mareel M . Role of tissue stroma in cancer cell invasion. J Pathol 2003; 200: 429–447.

    Article  CAS  PubMed  Google Scholar 

  7. Micke P, Ostman A . Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 2005; 9: 1217–1233.

    Article  CAS  PubMed  Google Scholar 

  8. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2004; 64: 3215–3222.

    Article  CAS  PubMed  Google Scholar 

  9. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  10. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008; 68: 918–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol [Research Support, Non-U.S. Gov't] 2007; 9: 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  12. Salaria SN, Illei P, Sharma R, Walter KM, Klein AP, Eshleman JR et al. Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t] 2007; 6: 324–328.

    Article  CAS  PubMed  Google Scholar 

  13. Goicoechea SM, Bednarski B, Stack C, Cowan DW, Volmar K, Thorne L et al. Isoform-specific upregulation of palladin in human and murine pancreas tumors. PLoS One [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2010; 5: e10347.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gupta V, Bassi DE, Simons JD, Devarajan K, Al-Saleem T, Uzzo RG et al. Elevated expression of stromal palladin predicts poor clinical outcome in renal cell carcinoma. PLoS One 6: e21494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parast MM, Otey CA . Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 2000; 150: 643–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goicoechea S, Arneman D, Disanza A, Garcia-Mata R, Scita G, Otey CA . Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci 2006; 119 (Pt 16): 3316–3324.

    Article  CAS  PubMed  Google Scholar 

  17. Boukhelifa M, Parast MM, Valtschanoff JG, LaMantia AS, Meeker RB, Otey CA . A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Mol Biol Cell 2001; 12: 2721–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L et al. Disruption of palladin results in neural tube closure defects in mice. Mol Cell Neurosci 2005; 29: 507–515.

    Article  CAS  PubMed  Google Scholar 

  19. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC et al. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 1994; 54: 5702–5710.

    CAS  PubMed  Google Scholar 

  20. Chen WT . Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool 1989; 251: 167–185.

    Article  CAS  PubMed  Google Scholar 

  21. Gimona M, Buccione R, Courtneidge SA, Linder S . Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 2008; 20: 235–241.

    Article  CAS  PubMed  Google Scholar 

  22. Buccione R, Caldieri G, Ayala I . Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 2009; 28: 137–149.

    Article  PubMed  Google Scholar 

  23. Hai CM, Hahne P, Harrington EO, Gimona M . Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. Exp Cell Res 2002; 280: 64–74.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao H, Bai XH, Kapus A, Lu WY, Mak AS, Liu M . The protein kinase C cascade regulates recruitment of matrix metalloprotease 9 to podosomes and its release and activation. Mol Cell Biol 2010; 30: 5545–5561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatin F, Varon C, Genot E, Moreau V . A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 2006; 119 (Pt 4): 769–781.

    Article  CAS  PubMed  Google Scholar 

  26. Mizutani K, Miki H, He H, Maruta H, Takenawa T . Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 2002; 62: 669–674.

    CAS  PubMed  Google Scholar 

  27. Murphy DA, Courtneidge SA . The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. Jul 12: 413–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bowden ET, Coopman PJ, Mueller SC . Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol 2001; 63: 613–627.

    Article  CAS  PubMed  Google Scholar 

  29. Mishra PJ, Glod JW, Banerjee D . Mesenchymal stem cells: flip side of the coin. Cancer Res 2009; 69: 1255–1258.

    Article  CAS  PubMed  Google Scholar 

  30. Mathison A, Liebl A, Bharucha J, Mukhopadhyay D, Lomberk G, Shah V et al. Pancreatic stellate cell models for transcriptional studies of desmoplasia-associated genes. Pancreatology 2010; 10: 505–516.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nakahara H, Otani T, Sasaki T, Miura Y, Takai Y, Kogo M . Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 2003; 8: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi H, Pixley F, Condeelis J . Invadopodia and podosomes in tumor invasion. Eur J Cell Biol 2006; 85: 213–218.

    Article  CAS  PubMed  Google Scholar 

  33. Furmaniak-Kazmierczak E, Crawley SW, Carter RL, Maurice DH, Cote GP . Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells. Circ Res 2007; 100: 1328–1336.

    Article  CAS  PubMed  Google Scholar 

  34. Karnoub AE, Symons M, Campbell SL, Der CJ . Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res Treat 2004; 84: 61–71.

    Article  CAS  PubMed  Google Scholar 

  35. Ren XD, Kiosses WB, Schwartz MA . Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 1999; 18: 578–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benard V, Bokoch GM . Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol 2002; 345: 349–359.

    Article  PubMed  Google Scholar 

  37. Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, Chen R . Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS One 2012; 7: e30219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alves F, Contag S, Missbach M, Kaspareit J, Nebendahl K, Borchers U et al. An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas [Research Support, Non-U.S. Gov't] 2001; 23: 227–235.

    Article  CAS  PubMed  Google Scholar 

  39. Katz MH, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M . A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 2003; 113: 151–160.

    Article  CAS  PubMed  Google Scholar 

  40. Arumugam T, Simeone DM, Van Golen K, Logsdon CD . S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 2005; 11: 5356–5364.

    Article  CAS  PubMed  Google Scholar 

  41. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR . Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci 2009; 122 (Pt 17): 3037–3049.

    Article  CAS  PubMed  Google Scholar 

  42. Ronty M, Taivainen A, Heiska L, Otey C, Ehler E, Song WK et al. Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res 2007; 313: 2575–2585.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boukhelifa M, Parast MM, Bear JE, Gertler FB, Otey CA . Palladin is a novel binding partner for Ena/VASP family members. Cell Motil Cytoskeleton 2004; 58: 17–29.

    Article  CAS  PubMed  Google Scholar 

  44. Ronty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O . Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res 2005; 310: 88–98.

    Article  PubMed  Google Scholar 

  45. Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S et al. The proline-rich protein palladin is a binding partner for profilin. FEBS J 2006; 273: 26–33.

    Article  CAS  PubMed  Google Scholar 

  46. Ridley AJ . Rho proteins and cancer. Breast Cancer Res Treat 2004; 84: 13–19.

    Article  CAS  PubMed  Google Scholar 

  47. Sahai E, Marshall CJ . RHO-GTPases and cancer. Nat Rev Cancer 2002; 2: 133–142.

    Article  PubMed  Google Scholar 

  48. Lazer G, Katzav S . Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2011; 23: 969–979.

    Article  CAS  PubMed  Google Scholar 

  49. Kuroiwa M, Oneyama C, Nada S, Okada M . The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation. J Cell Sci 2011; 124 (Pt 10): 1726–1738.

    Article  CAS  PubMed  Google Scholar 

  50. Ayala I, Giacchetti G, Caldieri G, Attanasio F, Mariggio S, Tete S et al. Faciogenital dysplasia protein Fgd1 regulates invadopodia biogenesis and extracellular matrix degradation and is up-regulated in prostate and breast cancer. Cancer Res 2009; 69: 747–752.

    Article  CAS  PubMed  Google Scholar 

  51. Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G . Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 2003; 14: 2482–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teti A, Colucci S, Grano M, Argentino L, Zambonin Zallone A . Protein kinase C affects microfilaments, bone resorption, and [Ca2+]o sensing in cultured osteoclasts. Am J Physiol 1992; 263 (1 Pt 1): C130–C139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Angela Mathison (Mayo Clinic College of Medicine) for assistance in generating the imPSCs (imPSC-C2 and imPSC-C3) and Gabriela Herrera for assistance with the AsPC-1 pancreatic tumor cells labeled with firefly luciferase. We also thank Dr Teresa Brentnall (University of Washington) for helpful discussions, and the Lineberger Comprehensive Cancer Center Animal Studies Core for assistance with xenograft experiments. This study was supported by grants from the NIH (GM081505 to CAO; CA161136 to SMG; DK52913 to RU), the NSF (MCB-1121365 to CAO), the Elsa U Pardee Foundation (CAO), the UNC University Cancer Research Fund (SMG), the CIHR (MOP-36332 to CAGM) and the Mayo Clinic Center for Cell Signaling in Gastroenterology (P30DK084567 to RU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Goicoechea.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goicoechea, S., García-Mata, R., Staub, J. et al. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 33, 1265–1273 (2014). https://doi.org/10.1038/onc.2013.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.68

Keywords

This article is cited by

Search

Quick links