Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis

Abstract

The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lopez-Otin C, Hunter T . The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 2010; 10: 278–292.

    Article  CAS  Google Scholar 

  2. Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY . Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem 2002; 277: 10539–10546.

    Article  CAS  Google Scholar 

  3. Hoang CD, D'Cunha J, Kratzke MG, Casmey CE, Frizelle SP, Maddaus MA et al. Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest 2004; 125: 1843–1852.

    Article  CAS  Google Scholar 

  4. Jin JS, Chen A, Hsieh DS, Yao CW, Cheng MF, Lin YF . Expression of serine protease matriptase in renal cell carcinoma: correlation of tissue microarray immunohistochemical expression analysis results with clinicopathological parameters. Int J Surg Pathol 2006; 14: 65–72.

    Article  CAS  Google Scholar 

  5. Jin JS, Hsieh DS, Loh SH, Chen A, Yao CW, Yen CY . Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Mod Pathol 2006; 19: 447–452.

    Article  CAS  Google Scholar 

  6. Johnson MD, Oberst MD, Lin CY, Dickson RB . Possible role of matriptase in the diagnosis of ovarian cancer. Expert Rev Mol Diagn 2003; 3: 331–338.

    Article  CAS  Google Scholar 

  7. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB et al. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003; 63: 1101–1105.

    CAS  Google Scholar 

  8. Lee JW, Yong Song S, Choi JJ, Lee SJ, Kim BG, Park CS et al. Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol 2005; 36: 626–633.

    Article  CAS  Google Scholar 

  9. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 2001; 158: 1301–1311.

    Article  CAS  Google Scholar 

  10. Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M et al. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 2002; 8: 1101–1107.

    CAS  PubMed  Google Scholar 

  11. Tanimoto H, Shigemasa K, Tian X, Gu L, Beard JB, Sawasaki T et al. Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer 2005; 92: 278–283.

    Article  CAS  Google Scholar 

  12. Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U et al. The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 2006; 6: 176.

    Article  Google Scholar 

  13. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer J, Molinolo A et al. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 2011; 30: 2003–2016.

    Article  CAS  Google Scholar 

  14. Lebeau AM, Lee M, Murphy ST, Hann BC, Warren RS, Delos Santos R et al. Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc Natl Acad Sci USA 2013; 110: 93–98.

    Article  CAS  Google Scholar 

  15. Bocheva G, Rattenholl A, Kempkes C, Goerge T, Lin CY, D'Andrea MR et al. Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol 2009; 129: 1816–1823.

    Article  CAS  Google Scholar 

  16. List K . Matriptase: a culprit in cancer? Future Oncol 2009; 5: 97–104.

    Article  CAS  Google Scholar 

  17. Bugge TH, Antalis TM, Wu Q . Type II transmembrane serine proteases. J Biol Chem 2009; 284: 23177–23181.

    Article  CAS  Google Scholar 

  18. List K, Szabo R, Molinolo A, Nielsen BS, Bugge TH . Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 2006; 168: 1513–1525.

    Article  CAS  Google Scholar 

  19. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19: 1934–1950.

    Article  CAS  Google Scholar 

  20. Schaffner F, Ruf W . Tissue factor and protease-activated receptor signaling in cancer. Semin Thromb Hemost 2008; 34: 147–153.

    Article  CAS  Google Scholar 

  21. Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I et al. Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell 2010; 18: 25–38.

    Article  CAS  Google Scholar 

  22. Coughlin SR, Camerer E . Participation in inflammation. J Clin Invest 2003; 111: 25–27.

    Article  CAS  Google Scholar 

  23. Rothmeier AS, Ruf W . Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 34: 133–149.

    Article  Google Scholar 

  24. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J . Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 1994; 91: 9208–9212.

    Article  CAS  Google Scholar 

  25. Camerer E, Huang W, Coughlin SR . Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 2000; 97: 5255–5260.

    Article  CAS  Google Scholar 

  26. Camerer E, Rottingen JA, Iversen JG, Prydz H . Coagulation factors VII and X induce Ca2+ oscillations in Madin-Darby canine kidney cells only when proteolytically active. J Biol Chem 1996; 271: 29034–29042.

    Article  CAS  Google Scholar 

  27. Camerer E, Kataoka H, Kahn M, Lease K, Coughlin SR . Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 2002; 277: 16081–16087.

    Article  CAS  Google Scholar 

  28. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997; 272: 4043–4049.

    Article  CAS  Google Scholar 

  29. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI et al. Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 2006; 281: 32095–32112.

    Article  CAS  Google Scholar 

  30. Ramsay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA et al. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J Biol Chem 2008; 283: 12293–12304.

    Article  CAS  Google Scholar 

  31. Chokki M, Yamamura S, Eguchi H, Masegi T, Horiuchi H, Tanabe H et al. Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells. Am J Respir Cell Mol Biol 2004; 30: 470–478.

    Article  CAS  Google Scholar 

  32. Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J et al. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 2005; 388: 967–972.

    Article  CAS  Google Scholar 

  33. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS . Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000; 275: 26333–26342.

    Article  CAS  Google Scholar 

  34. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M et al. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci USA 1995; 92: 9151–9155.

    Article  CAS  Google Scholar 

  35. Hou L, Kapas S, Cruchley AT, Macey MG, Harriott P, Chinni C et al. Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 1998; 94: 356–362.

    Article  CAS  Google Scholar 

  36. Scott G, Leopardi S, Parker L, Babiarz L, Seiberg M, Han R . The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes. J Invest Dermatol 2003; 121: 529–541.

    Article  CAS  Google Scholar 

  37. Kanke T, Macfarlane SR, Seatter MJ, Davenport E, Paul A, McKenzie RC et al. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem 2001; 276: 31657–31666.

    Article  CAS  Google Scholar 

  38. Wakita H, Furukawa F, Takigawa M . Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Physicians 1997; 109: 190–207.

    CAS  PubMed  Google Scholar 

  39. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 2009; 206: 1135–1147.

    Article  CAS  Google Scholar 

  40. Scott G, Leopardi S, Printup S, Malhi N, Seiberg M, Lapoint R . Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. J Invest Dermatol 2004; 122: 1214–1224.

    Article  CAS  Google Scholar 

  41. Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S et al. Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 2005; 124: 38–45.

    Article  CAS  Google Scholar 

  42. Frateschi S, Camerer E, Crisante G, Rieser S, Membrez M, Charles RP et al. PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun 2011; 2: 161.

    Article  Google Scholar 

  43. Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D et al. Delayed onset of inflammation in protease-activated receptor-2- deficient mice. J Immunol 2000; 165: 6504–6510.

    Article  CAS  Google Scholar 

  44. Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E . p120-catenin mediates inflammatory responses in the skin. Cell 2006; 124: 631–644.

    Article  CAS  Google Scholar 

  45. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med 2012; 209: 1689–1702.

    Article  CAS  Google Scholar 

  46. Szabo R, Uzzun Sales K, Kosa P, Shylo NA, Godiksen S, Hansen KK et al. Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation. PLoS Genet 2012; 8: e1002937.

    Article  CAS  Google Scholar 

  47. Friis S, Sales KU, Godiksen S, Peters DE, Lin CY, Vogel LK et al. A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation. J Biol Chem 2013; 288: 19028–19039.

    Article  CAS  Google Scholar 

  48. Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP et al. Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 769–775.

    Article  CAS  Google Scholar 

  49. Kaufmann R, Oettel C, Horn A, Halbhuber KJ, Eitner A, Krieg R et al. Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis 2009; 30: 1487–1496.

    Article  CAS  Google Scholar 

  50. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 2002; 169: 5315–5321.

    Article  Google Scholar 

  51. Szabo R, Hobson JP, List K, Molinolo A, Lin CY, Bugge TH . Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem 2008; 283: 29495–29504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Mary Jo Danton for critically reviewing this manuscript. Histology was performed by Histoserv, Germantown, MD, USA. We thank Dr Allessia Gallo, Shyh-Ing Jang, Colleen Doci, Patricia Pilla, Zhiyong Wang, Canstantinos Mikelis, Ramiro Iglesias-Bartolome and Morgan O’Hare for technical assistance. The study was supported by the NIDCR Intramural Research Program (THB, JSG, WC), the Augustinus Foundation, Kobmand Kristian Kjær og hustrus Foundation, the Kjær-Foundation, the Dagmar Marshalls Foundation, the Snedkermester Sophus Jacobsen og Hustru Astrid Jacobsens Foundation, the Grosserer Valdemar Foersom og Hustru Thyra Foersoms Foundation and Fabrikant Einar Willumsens Mindelegat (SG and LKV), and the Sao Paulo Research Foundation (FAPESP) (MH, SRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T H Bugge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sales, K., Friis, S., Konkel, J. et al. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene 34, 346–356 (2015). https://doi.org/10.1038/onc.2013.563

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.563

Keywords

This article is cited by

Search

Quick links