Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing

Abstract

Cullin 4B (CUL4B) is a component of the Cullin4B-Ring E3 ligase complex (CRL4B) that functions in proteolysis and is implicated in tumorigenesis. Here, we report that CRL4B is associated with histone methyltransferase SUV39H1, heterochromatin protein 1 (HP1) and DNA methyltransferases 3A (DNMT3A). We showed that CRL4B, through catalyzing H2AK119 monoubiquitination, facilitates H3K9 tri-methylation and DNA methylation, two key epigenetic modifications involved in DNA methylation-based gene silencing. Depletion of CUL4B resulted in loss of not only H2AK119 monoubiquitination but also H3K9 trimethylation and DNA methylation, leading to derepression of a collection of genes, including the tumor suppressor IGFBP3. We demonstrated that CUL4B promotes cell proliferation and invasion, which are consistent with a tumorigenic phenotype, at least partially by repressing IGFBP3. We found that the expression of CUL4B is markedly upregulated in samples of human cervical carcinoma and is negatively correlated with the expression of IGFBP3. Our experiments unveiled a coordinated action between histone ubiquitination/methylation and DNA methylation in transcription repression, providing a mechanism for CUL4B in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006; 75: 243–269.

    CAS  PubMed  Google Scholar 

  2. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 2002; 418: 498.

    CAS  PubMed  Google Scholar 

  3. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    CAS  PubMed  Google Scholar 

  4. Goldknopf IL, Taylor CW, Baum RM, Yeoman LC, Olson MO, Prestayko AW et al. Isolation and characterization of protein A24, a ‘histone-like’ non-histone chromosomal protein. J Biol Chem 1975; 250: 7182–7187.

    CAS  PubMed  Google Scholar 

  5. Zhang Y . Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003; 17: 2733–2740.

    CAS  PubMed  Google Scholar 

  6. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol cell 2005; 20: 601–611.

    CAS  PubMed  Google Scholar 

  7. Kim J, Hake SB, Roeder RG . The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 2005; 20: 759–770.

    CAS  PubMed  Google Scholar 

  8. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 2004; 7: 663–676.

    CAS  PubMed  Google Scholar 

  9. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431: 873–878.

    CAS  PubMed  Google Scholar 

  10. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer cell 2012; 22: 781–795.

    CAS  PubMed  Google Scholar 

  11. Jackson S, Xiong Y . CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34: 562–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P . Cul4A is essential for spermatogenesis and male fertility. Dev Biol 2011; 352: 278–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Lee S, Zhang J, Peters SB, Hannah J, Zhang Y et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell 2009; 34: 451–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin Y, Lin C, Kim ST, Roig I, Chen H, Liu L et al. The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol 2011; 356: 51–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T et al. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle 2006; 5: 1719–1729.

    CAS  PubMed  Google Scholar 

  16. Higa LA, Yang X, Zheng J, Banks D, Wu M, Ghosh P et al. Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 2006; 5: 71–77.

    CAS  PubMed  Google Scholar 

  17. Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T . CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 2008; 283: 29045–29052.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schindl M, Gnant M, Schoppmann SF, Horvat R, Birner P . Overexpression of the human homologue for Caenorhabditis elegans cul-4 gene is associated with poor outcome in node-negative breast cancer. Anticancer Res 2007; 27: 949–952.

    CAS  PubMed  Google Scholar 

  19. Singhal S, Amin KM, Kruklitis R, DeLong P, Friscia ME, Litzky LA et al. Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling. Cancer Biol Ther 2003; 2: 291–298.

    CAS  PubMed  Google Scholar 

  20. Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet 2007; 80: 345–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet 2007; 80: 561–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakagawa T, Xiong Y . X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell 2011; 43: 381–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem 2009; 284: 33320–33332.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS . The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA 2006; 103: 2588–2593.

    CAS  PubMed  Google Scholar 

  25. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 2006; 22: 383–394.

    PubMed  Google Scholar 

  26. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  PubMed  Google Scholar 

  27. Bestor TH . The DNA methyltransferases of mammals. Hum Mol Genet 2000; 9: 2395–2402.

    CAS  PubMed  Google Scholar 

  28. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI . Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292: 110–113.

    CAS  PubMed  Google Scholar 

  29. Tamaru H, Selker EU . A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001; 414: 277–283.

    CAS  PubMed  Google Scholar 

  30. Jackson JP, Lindroth AM, Cao X, Jacobsen SE . Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002; 416: 556–560.

    CAS  PubMed  Google Scholar 

  31. Nakayama J, Klar AJ, Grewal SI . A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 2000; 101: 307–317.

    CAS  PubMed  Google Scholar 

  32. Thon G, Verhein-Hansen J . Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 2000; 155: 551–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuks F, Hurd PJ, Deplus R, Kouzarides T . The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31: 2305–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410: 120–124.

    CAS  PubMed  Google Scholar 

  35. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116–120.

    CAS  PubMed  Google Scholar 

  36. Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H . CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 2006; 8: 1277–1283.

    CAS  PubMed  Google Scholar 

  37. He YJ, McCall CM, Hu J, Zeng Y, Xiong Y . DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006; 20: 2949–2954.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang GG, Cai L, Pasillas MP, Kamps MP . NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9: 804–812.

    CAS  PubMed  Google Scholar 

  39. Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu RM . The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 2011; 286: 8361–8368.

    CAS  PubMed  Google Scholar 

  40. Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW . Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 2006; 5: 26.

    PubMed  PubMed Central  Google Scholar 

  41. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630–9645.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 2009; 16: 304–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 2012; 19: 136–144.

    CAS  PubMed  Google Scholar 

  44. Grimberg A . P53 and IGFBP-3: apoptosis and cancer protection. Mol Genet Metab 2000; 70: 85–98.

    CAS  PubMed  Google Scholar 

  45. Chang YS, Wang L, Liu D, Mao L, Hong WK, Khuri FR et al. Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clin Cancer Res 2002; 8: 3669–3675.

    CAS  PubMed  Google Scholar 

  46. Hanafusa T, Yumoto Y, Nouso K, Nakatsukasa H, Onishi T, Fujikawa T et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma. Cancer Lett 2002; 176: 149–158.

    CAS  PubMed  Google Scholar 

  47. Tomii K, Tsukuda K, Toyooka S, Dote H, Hanafusa T, Asano H et al. Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int J Cancer 2007; 120: 566–573.

    CAS  PubMed  Google Scholar 

  48. Wiley A, Katsaros D, Fracchioli S, Yu H . Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int J Gynecol Cancer 2006; 16: 210–218.

    CAS  PubMed  Google Scholar 

  49. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    CAS  PubMed  Google Scholar 

  50. Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H et al. Differential gene regulation by the SRC family of coactivators. Genes Dev 2004; 18: 1753–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Creusot F, Acs G, Christman JK . Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257: 2041–2048.

    CAS  PubMed  Google Scholar 

  52. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377: 646–649.

    CAS  PubMed  Google Scholar 

  53. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    CAS  PubMed  Google Scholar 

  54. Li E, Bestor TH, Jaenisch R . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915–926.

    CAS  PubMed  Google Scholar 

  55. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107: 323–337.

    CAS  PubMed  Google Scholar 

  56. Cang Y, Zhang J, Nicholas SA, Bastien J, Li B, Zhou P et al. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 2006; 127: 929–940.

    CAS  PubMed  Google Scholar 

  57. Feng J, Chang H, Li E, Fan G . Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005; 79: 734–746.

    CAS  PubMed  Google Scholar 

  58. Chen CY, Tsai MS, Lin CY, Yu IS, Chen YT, Lin SR et al. Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Gen 2012; 21: 4270–4285.

    CAS  PubMed  Google Scholar 

  59. Watanabe D, Uchiyama K, Hanaoka K . Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 2006; 142: 727–737.

    CAS  PubMed  Google Scholar 

  60. Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP et al. HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions. J Cell Biol 2008; 183: 597–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 2010; 329: 444–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R . Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dynam 2007; 236: 1663–1676.

    CAS  Google Scholar 

  63. Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007; 2: e895.

    PubMed  PubMed Central  Google Scholar 

  64. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010; 13: 423–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu HC, Enikolopov G, Chen Y . Cul4B regulates neural progenitor cell growth. BMC Neurosci 2012; 13: 112.

    PubMed  PubMed Central  Google Scholar 

  66. Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapic-Otrin V . The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res 2008; 68: 5014–5022.

    CAS  PubMed  Google Scholar 

  67. Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausio J . Histone ubiquitination: a tagging tail unfolds? Bioessays 2002; 24: 166–174.

    CAS  PubMed  Google Scholar 

  68. Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 2005; 25: 1041–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 2007; 27: 609–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakagawa T, Kajitani T, Togo S, Masuko N, Ohdan H, Hishikawa Y et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 2008; 22: 37–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007; 131: 1084–1096.

    CAS  PubMed  Google Scholar 

  72. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW . Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 2008; 453: 812–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Swerdlow PS, Schuster T, Finley D . A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10: 4905–4911.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 2007; 9: 1428–1435.

    CAS  PubMed  Google Scholar 

  75. Jia S, Kobayashi R, Grewal SI . Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 2005; 7: 1007–1013.

    CAS  PubMed  Google Scholar 

  76. Horn PJ, Bastie JN, Peterson CL . A Rik1-associated cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 2005; 19: 1705–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M et al. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J 2011; 30: 731–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y et al. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 2010; 285: 4355–4365.

    CAS  PubMed  Google Scholar 

  79. Hong EJ, Villen J, Gerace EL, Gygi SP, Moazed D . A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol 2005; 2: 106–111.

    CAS  PubMed  Google Scholar 

  80. Li F, Huarte M, Zaratiegui M, Vaughn MW, Shi Y, Martienssen R et al. Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 2008; 135: 272–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Firth SM, Baxter RC . Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 2002; 23: 824–854.

    CAS  PubMed  Google Scholar 

  82. Bhattacharyya N, Pechhold K, Shahjee H, Zappala G, Elbi C, Raaka B et al. Nonsecreted insulin-like growth factor binding protein-3 (IGFBP-3) can induce apoptosis in human prostate cancer cells by IGF-independent mechanisms without being concentrated in the nucleus. J Biol Chem 2006; 281: 24588–24601.

    CAS  PubMed  Google Scholar 

  83. Williams AC, Collard TJ, Perks CM, Newcomb P, Moorghen M, Holly JM et al. Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells. Cancer Res 2000; 60: 22–27.

    CAS  PubMed  Google Scholar 

  84. Hanafusa T, Shinji T, Shiraha H, Nouso K, Iwasaki Y, Yumoto E et al. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation. BMC cancer 2005; 5: 9.

    PubMed  PubMed Central  Google Scholar 

  85. Nag A, Bagchi S, Raychaudhuri P . Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res 2004; 64: 8152–8155.

    CAS  PubMed  Google Scholar 

  86. Ramchandani S, MacLeod AR, Pinard M, von Hofe E, Szyf M . Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 1997; 94: 684–689.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (81322032, 31171240 and 90919053 to YW) from the National Natural Science Foundation of China, grant (NECT-12–1067 to YW) from the Ministry of Education of China, and grant (2013CB910900 to YG) from the National Basic Research Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Liu, R., Qiu, R. et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 34, 104–118 (2015). https://doi.org/10.1038/onc.2013.522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.522

Keywords

This article is cited by

Search

Quick links