Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Toward a therapeutic reduction of imatinib refractory myeloproliferative neoplasm-initiating cells

Abstract

Myeloproliferative neoplasms (MPNs) such as chronic myelogenous (CML) and chronic myelomonocytic leukemias (CMML) are frequently induced by tyrosine kinase oncogenes. Although these MPNs are sensitive to tyrosine kinase inhibitors such as imatinib, patients often relapse upon withdrawal of therapy. We used a model of MPN, which is induced by co-expression of the oncoproteins HIP1/PDGFβR (H/P) and AML1/ETO from their endogenous loci, to examine the mechanisms of disease development and recurrence following imatinib withdrawal. Although the MPN displayed a full hematologic response to imatinib, 100% of the diseased mice relapsed upon drug withdrawal. MPN persistence was not due to imatinib resistance mutations in the H/P oncogene or massive gene expression changes. Within 1 week of imatinib treatment, more than 98% of gene expression changes induced by the oncogenes in isolated hematopoietic stem and progenitor cells (lineage-Sca-1+c-Kit+ immunophenotype) normalized. Supplementation of imatinib with granulocyte colony-stimulating factor or arsenic trioxide reduced MPN-initiating cell frequencies and the combination of imatinib with arsenic trioxide cured a large fraction of mice with MPNs. In contrast, no mice in the imatinib-treated control cohorts were cured. These data suggest that treatment with a combination of arsenic trioxide and imatinib can eliminate refractory MPN-initiating cells and reduce disease relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

A/E:

AML1/ETO

CBC:

complete blood count

CML:

chronic myelogenous leukemia

CMML:

chronic myelomonocytic leukemia

Cy/G:

cyclophosphamide/G-CSF

Cytarabine:

ara-C

GMP:

granulocyte/monocyte progenitor

H/P:

HIP1/PDGFβR

H/P;A/E:

genotype of Mx1-Cre;Hip1LSL-hp/+;Aml1LSL-AE/+

HSC:

hematopoietic stem cell

HSPC:

hematopoietic stem and progenitor cell

LIC:

leukemia initiating cell

LK:

lineagec-Kit+ immunophenotype

LSK:

lineageSca-1+c-Kit+ immunophenotype

LS:

lineage-Sca-1+c-Kit+/− immunophenotype

LT-HSC:

long-term hematopoietic stem cell

MPN:

myeloproliferative neoplasm

MPP:

multipotent progenitor

pIpC:

polyinosinic-polycytidylic acid

ST-HSC:

short-term hematopoietic stem cell

TKI:

tyrosine kinase inhibitor

WBC:

white blood cell count.

References

  1. Savona M, Talpaz M . Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 2008; 8: 341–350.

    Article  CAS  PubMed  Google Scholar 

  2. Cortes J, O’Brien S, Kantarjian H . Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004; 104: 2204–2205.

    CAS  PubMed  Google Scholar 

  3. Higashi T, Tsukada J, Kato C, Iwashige A, Mizobe T, Machida S et al. Imatinib mesylate-sensitive blast crisis immediately after discontinuation of imatinib mesylate therapy in chronic myelogenous leukemia: report of two cases. Am J Hematol 2004; 76: 275–278.

    Article  CAS  PubMed  Google Scholar 

  4. Mauro MJ, Druker BJ, Maziarz RT . Divergent clinical outcome in two CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk Res 2004; 28 (Suppl 1): S71–S73.

    Article  CAS  PubMed  Google Scholar 

  5. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  6. David M, Cross NC, Burgstaller S, Chase A, Curtis C, Dang R et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007; 109: 61–64.

    Article  CAS  PubMed  Google Scholar 

  7. Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002; 347: 481–487.

    Article  CAS  PubMed  Google Scholar 

  8. Provenzano JD, Kuebler JP . Novel t(5;19) translocation in a patient with PDGFRB associated chronic leukemia: implications for treatment strategy. Case Rep Hematol 2013; 2013: 709164.

    PubMed  PubMed Central  Google Scholar 

  9. Wang JC, Dick JE . Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005; 15: 494–501.

    Article  CAS  PubMed  Google Scholar 

  10. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  11. Jorgensen HG, Copland M, Allan EK, Jiang X, Eaves A, Eaves C et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 2006; 12: 626–633.

    Article  CAS  PubMed  Google Scholar 

  12. Holtz M, Forman SJ, Bhatia R . Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res 2007; 67: 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  13. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med 2010; 363: 2511–2521.

    Article  CAS  PubMed  Google Scholar 

  14. Oravecz-Wilson KI, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD et al. Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell 2009; 16: 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grand FH, Burgstaller S, Kühr T, Baxter EJ, Webersinke G, Thaler J et al. p53-Binding protein 1 is fused to the platelet-derived growth factor receptor beta in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res 2004; 64: 7216–7219.

    Article  CAS  PubMed  Google Scholar 

  16. Jones AV, Cross NC . Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 2004; 61: 2912–2923.

    Article  CAS  PubMed  Google Scholar 

  17. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strout MP, Marcucci G, Caligiuri MA, Bloomfield CD . Core-binding factor (CBF) and MLL-associated primary acute myeloid leukemia: biology and clinical implications. Ann Hematol 1999; 78: 251–264.

    Article  CAS  PubMed  Google Scholar 

  20. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  21. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006; 20: 965–970.

    Article  CAS  PubMed  Google Scholar 

  22. Grossmann V, Kohlmann A, Zenger M, Schindela S, Eder C, Weissmann S et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 2011; 25: 557–560.

    Article  CAS  PubMed  Google Scholar 

  23. Lagasse E, Weissman IL . bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 1994; 179: 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  24. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 2007; 449: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forsberg EC, Passegué E, Prohaska SS, Wagers AJ, Koeva M, Stuart JM et al. Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 2010; 5: e8785.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vainio P, Lehtinen L, Mirtti T, Hilvo M, Seppänen-Laakso T, Virtanen J et al. Phospholipase PLA2G7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins. Oncotarget 2011; 2: 1176–1190.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang H, Reed CP, Zhang JS, Shridhar V, Wang L, Smith DI . Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res 1999; 59: 2981–2988.

    CAS  PubMed  Google Scholar 

  28. Zuccolo J, Bau J, Childs SJ, Goss GG, Sensen CW, Deans JP . Phylogenetic analysis of the MS4A and TMEM176 gene families. PLoS One 2010; 5: e9369.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee KH, Ono M, Inui M, Yuasa T, Takai T . Stimulatory function of gp49A, a murine Ig-like receptor, in rat basophilic leukemia cells. J Immunol 2000; 165: 4970–4977.

    Article  CAS  PubMed  Google Scholar 

  30. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138: 271–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL . Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 2003; 100: 10002–10007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ross TS, Bernard OA, Berger R, Gilliland DG . Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 1998; 91: 4419–4426.

    CAS  PubMed  Google Scholar 

  34. Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK et al. Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 2003; 278: 30652–30660.

    Article  CAS  PubMed  Google Scholar 

  35. Ames HM, Wang AA, Coughran A, Evaul K, Huang S, Graves CW et al. HIP1 Phosphorylation by Receptor Tyrosine Kinases. Mol Cell Biol 2013; 33: 3580–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 2010; 17: 427–442.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Connor RF, Hurd D, Pettenati MJ, Koty P, Molnár I . Addition of sargramostim (GM-CSF) to imatinib results in major cytogenetic response in a patient with chronic myeloid leukemia. Leuk Res 2006; 30: 1249–1252.

    Article  CAS  PubMed  Google Scholar 

  38. Morrison SJ, Wright DE, Weissman IL . Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 1997; 94: 1908–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 2009; 458: 904–908.

    Article  CAS  PubMed  Google Scholar 

  41. Kavalerchik E, Goff D, Jamieson CH . Chronic myeloid leukemia stem cells. J Clin Oncol 2008; 26: 2911–2915.

    Article  PubMed  Google Scholar 

  42. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    Article  CAS  PubMed  Google Scholar 

  43. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  44. Agarwal A, Fleischman AG, Petersen CL, MacKenzie R, Luty S, Loriaux M et al. Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML. Blood 2012; 120: 2658–2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drummond MW, Heaney N, Kaeda J, Nicolini FE, Clark RE, Wilson G et al. A pilot study of continuous imatinib vs pulsed imatinib with or without G-CSF in CML patients who have achieved a complete cytogenetic response. Leukemia 2009; 23: 1199–1201.

    Article  CAS  PubMed  Google Scholar 

  46. Antman KH . Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 2001; 6 (Suppl 2): 1–2.

    Article  CAS  PubMed  Google Scholar 

  47. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    Article  CAS  PubMed  Google Scholar 

  48. Graves CW, Philips ST, Bradley SV, Oravecz-Wilson KI, Li L, Gauvin A et al. Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues. Cancer Res 2008; 68: 1064–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Irizarry RA, Wu Z, Jaffee HA . Comparison of Affymetrix GeneChip expression measures. Bioinformatics 2006; 22: 789–794.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bob Rooney, Luke Peterson, Phil (Zhe) Guan, Ivan Maillard, Yipin Wu and Alice Gauvin for their intellectual input and technical assistance. This work was supported by the following grants: CBTG CA009676 (STP), R01 CA82363-03 (TSR) and R01 CA098730-01 (TSR), and a Burroughs Wellcome Fund Clinical Scientist Award in Translational Research (TSR). TSR holds the Jeanne Ann Plitt Professorship in Breast Cancer Research and the H Ben and Isabelle T Decherd Chair in Internal Medicine at UT Southwestern Medical Center. TSR was supported as a Leukemia and Lymphoma Society Scholar during the time this work was completed.

Author Contributions

STP, ZLH, KIOW and SBF performed, designed, edited and interpreted the research. TSR designed and interpreted the research. TSR, STP and VEM wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Ross.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philips, S., Hildenbrand, Z., Oravecz-Wilson, K. et al. Toward a therapeutic reduction of imatinib refractory myeloproliferative neoplasm-initiating cells. Oncogene 33, 5379–5390 (2014). https://doi.org/10.1038/onc.2013.484

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.484

Keywords

Search

Quick links