Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells

Abstract

Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P<0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n=120; P=0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ . Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 2006; 66: 6936–6946.

    Article  CAS  Google Scholar 

  2. Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H et al. Molecular classification of rhabdomyosarcoma—genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol 2009; 174: 550–564.

    Article  CAS  Google Scholar 

  3. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 2012; 30: 1670–1677.

    Article  Google Scholar 

  4. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 2002; 20: 2672–2679.

    Article  CAS  Google Scholar 

  5. Bennicelli JL, Edwards RH, Barr FG . Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1996; 93: 5455–5459.

    Article  CAS  Google Scholar 

  6. Epstein JA, Song B, Lakkis M, Wang C . Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol Cell Biol 1998; 18: 4118–4130.

    Article  CAS  Google Scholar 

  7. Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995; 15: 1522–1535.

    Article  CAS  Google Scholar 

  8. Zhang L, Wang C . Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain. Oncogene 2007; 26: 1595–1605.

    Article  CAS  Google Scholar 

  9. Kikuchi K, Tsuchiya K, Otabe O, Gotoh T, Tamura S, Katsumi Y et al. Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochem Biophys Res Commun 2008; 365: 568–574.

    Article  CAS  Google Scholar 

  10. Cao L, Yu Y, Bilke S, Walker RL, Mayeenuddin LH, Azorsa DO et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 2010; 70: 6497–6508.

    Article  CAS  Google Scholar 

  11. Calhabeu F, Hayashi S, Morgan JE, Relaix F, Zammit PS . Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells. Oncogene 2013; 32: 651–662.

    Article  CAS  Google Scholar 

  12. Cloos PA, Christensen J, Agger K, Helin K . Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 2008; 22: 1115–1140.

    Article  CAS  Google Scholar 

  13. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 1999; 274: 15633–15645.

    Article  CAS  Google Scholar 

  14. Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 2007; 104: 19226–19231.

    Article  CAS  Google Scholar 

  15. Schildhaus HU, Riegel R, Hartmann W, Steiner S, Wardelmann E, Merkelbach-Bruse S et al. Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors, synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant peripheral nerve sheath tumors. Hum Pathol 2011; 42: 1667–1675.

    Article  CAS  Google Scholar 

  16. Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 2009; 69: 2065–2071.

    Article  CAS  Google Scholar 

  17. Lee MH, Jothi M, Gudkov AV, Mal AK . Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res 2011; 71: 3921–3931.

    Article  CAS  Google Scholar 

  18. Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci USA 2011; 108: E149–E158.

    Article  Google Scholar 

  19. Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 2010; 12: 618–624.

    Article  CAS  Google Scholar 

  20. Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 2009; 139: 1303–1314.

    Article  Google Scholar 

  21. Juan AH, Derfoul A, Feng X, Ryall JG, Dell’Orso S, Pasut A et al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 2011; 25: 789–794.

    Article  CAS  Google Scholar 

  22. Klose RJ, Kallin EM, Zhang Y . JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 2006; 7: 715–727.

    Article  CAS  Google Scholar 

  23. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV et al. JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells. Nature 2010; 464: 306–310.

    Article  CAS  Google Scholar 

  24. Chang CJ, Hung MC . The role of EZH2 in tumour progression. Br J Cancer 2012; 106: 243–247.

    Article  CAS  Google Scholar 

  25. Kim TG, Chen J, Sadoshima J, Lee Y . Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol 2004; 24: 10151–10160.

    Article  CAS  Google Scholar 

  26. Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D . Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010; 24: 368–380.

    Article  Google Scholar 

  27. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2009; 139: 1290–1302.

    Article  Google Scholar 

  28. Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 2010; 28: 2151–2158.

    Article  Google Scholar 

  29. Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M . Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett 2009; 279: 126–136.

    Article  CAS  Google Scholar 

  30. Aguanno S, Bouche M, Adamo S, Molinaro M . 12-O-tetradecanoylphorbol-13-acetate-induced differentiation of a human rhabdomyosarcoma cell line. Cancer Res 1990; 50: 3377–3382.

    CAS  PubMed  Google Scholar 

  31. Linardic CM . PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 2008; 270: 10–18.

    Article  CAS  Google Scholar 

  32. Stojic L, Jasencakova Z, Prezioso C, Stutzer A, Bodega B, Pasini D et al. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenet Chromatin 2011; 4: 16.

    Article  CAS  Google Scholar 

  33. Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J et al. Antitumor activity of sustained N-myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res 2012; 18: 796–807.

    Article  CAS  Google Scholar 

  34. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491–502.

    Article  CAS  Google Scholar 

  35. Xia SJ, Holder DD, Pawel BR, Zhang C, Barr FG . High expression of the PAX3-FKHR oncoprotein is required to promote tumorigenesis of human myoblasts. Am J Pathol 2009; 175: 2600–2608.

    Article  CAS  Google Scholar 

  36. Lollini PL, De Giovanni C, Landuzzi L, Nicoletti G, Scotlandi K, Nanni P . Reduced metastatic ability of in vitro differentiated human rhabdomyosarcoma cells. Invasion Metast 1991; 11: 116–124.

    CAS  Google Scholar 

  37. Merlino G, Helman LJ . Rhabdomyosarcoma—working out the pathways. Oncogene 1999; 18: 5340–5348.

    Article  CAS  Google Scholar 

  38. Barlow JW, Wiley JC, Mous M, Narendran A, Gee MF, Goldberg M et al. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer 2006; 47: 773–784.

    Article  Google Scholar 

  39. Jung J, Kim TG, Lyons GE, Kim HR, Lee Y . Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 2005; 280: 30916–30923.

    Article  CAS  Google Scholar 

  40. Kim TG, Kraus JC, Chen J, Lee Y . JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J Biol Chem 2003; 278: 42247–42255.

    Article  CAS  Google Scholar 

  41. Takeuchi T, Kojima M, Nakajima K, Kondo S . Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev 1999; 86: 29–38.

    Article  CAS  Google Scholar 

  42. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R et al. Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle 2009; 8: 172–175.

    Article  CAS  Google Scholar 

  43. Richter GH, Plehm S, Fasan A, Rossler S, Unland R, Bennani-Baiti IM et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 2009; 106: 5324–5329.

    Article  CAS  Google Scholar 

  44. Palacios D, Summerbell D, Rigby PW, Boyes J . Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene. Mol Cell Biol 2010; 30: 3805–3815.

    Article  CAS  Google Scholar 

  45. Verrier L, Escaffit F, Chailleux C, Trouche D, Vandromme M . A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet 2011; 7: e1001390.

    Article  CAS  Google Scholar 

  46. Grimwade D, Mistry AR, Solomon E, Guidez F . Acute promyelocytic leukemia: a paradigm for differentiation therapy. Cancer Treat Res 2010; 145: 219–235.

    Article  CAS  Google Scholar 

  47. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol 2009; 27: 1007–1013.

    Article  CAS  Google Scholar 

  48. Veal GJ, Cole M, Errington J, Pearson AD, Foot AB, Whyman G et al. Pharmacokinetics and metabolism of 13-cis-retinoic acid (isotretinoin) in children with high-risk neuroblastoma—a study of the United Kingdom Children’s Cancer Study Group. Br J Cancer 2007; 96: 424–431.

    Article  CAS  Google Scholar 

  49. Luo X, Liu Y, Kubicek S, Myllyharju J, Tumber A, Ng S et al. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J Am Chem Soc 2011; 133: 9451–9456.

    Article  CAS  Google Scholar 

  50. Upadhyay AK, Rotili D, Han JW, Hu R, Chang Y, Labella D et al. An analog of BIX-01294 selectively inhibits a family of histone H3 lysine 9 Jumonji demethylases. J Mol Biol 2012; 416: 319–327.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for help and support with tumor collection and annotation from the Children’s Cancer and Leukemia Group. We also thank David Landeira for help with the JARID2 antibody. This work was supported by grants from Cancer Research UK (C5066/A10399); Sarcoma UK; the Chris Lucas Trust; Rob’s ARTTT Charity; the Medical Research Council for a studentship (TWSB); the Spanish Society of Medical Oncology (SEOM) Translational Research Fellowship (DO). We acknowledge NHS funding to the NIHR Biomedical Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Shipley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, Z., Villarejo-Balcells, B., Olmos, D. et al. JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells. Oncogene 33, 1148–1157 (2014). https://doi.org/10.1038/onc.2013.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.46

Keywords

This article is cited by

Search

Quick links