Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis

Abstract

Krüppel-like factor 8 (KLF8) is a transcriptional factor critical for metastatic progression of breast cancer. Epithelial stromal interaction 1 (EPSTI1), a recently identified stromal fibroblast-induced gene in non-invasive breast cancer cells is highly overexpressed in invasive breast carcinomas. The function and regulation of EPSTI1, however, remain largely unknown. In this paper, we report a novel KLF8 to EPSTI1 signaling pathway in breast cancer. Using various expression analyses, we revealed a high co-overexpression of KLF8 and EPSTI1 in invasive human breast cancer cells and patient tumors. Ectopic overexpression of KLF8 in the non-invasive MCF-10A cells induced the EPSTI1 expression, whereas KLF8 knockdown from the invasive, MDA-MB-231 cells decreased the EPSTI1 expression. Promoter activation and binding analyses indicated that KLF8 promoted the EPSTI1 expression by directly acting on the EPSTI1 gene promoter. EPSTI1 knockdown dramatically reduced the KLF8-promoted MCF-10A cell invasion, and ectopic expression of EPSTI1 in the non-invasive MCF-7 cells is sufficient to induce the cell invasion. Experiments using nude mice demonstrated that the ectopic EPSTI1 granted the MCF-7 cells capability of both invasive growth in the breasts and metastasis to the lungs. Using co-immunoprecipitation coupled with mass spectrometry, we discovered that EPSTI1 interacts with the valosin-containing protein (VCP), resulting in the degradation of IκBα and subsequent activation of NF-κB in the nucleus. These findings suggest a novel KLF8 to EPSTI1 to VCP to NF-κB signaling mechanism potentially critical for breast cancer invasion and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lahiri SK, Zhao J . Kruppel-like factor 8 emerges as an important regulator of cancer. Am J Transl Res 2012; 4: 357–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu H, Hu L, Li T, Lahiri S, Shen C, Wason MS et al. A novel role of Kruppel-like factor 8 in DNA repair in breast cancer cells. J Biol Chem 2012; 287: 43720–43729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu H, Wang X, Urvalek AM, Li T, Xie H, Yu L et al. Transformation of human ovarian surface epithelial cells by Kruppel-like factor 8. Oncogene 2013; 33: 10–18.

    Article  Google Scholar 

  4. Schnell O, Romagna A, Jaehnert I, Albrecht V, Eigenbrod S, Juerchott K et al. Kruppel-like factor 8 (KLF8) is expressed in gliomas of different WHO grades and is essential for tumor cell proliferation. PLoS One 2012; 7: e30429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J et al. Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 2011; 3: 121–132.

    CAS  PubMed  Google Scholar 

  6. Urvalek AM, Wang X, Lu H, Zhao J . KLF8 recruits the p300 and PCAF co-activators to its amino terminal activation domain to activate transcription. Cell Cycle 2010; 9: 601–611.

    Article  CAS  PubMed  Google Scholar 

  7. van Vliet J, Turner J, Crossley M . Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 2000; 28: 1955–1962.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J et al. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 2011; 30: 1901–1911.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Zheng M, Liu G, Xia W, McKeown-Longo PJ, Hung MC et al. Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 2007; 67: 7184–7193.

    Article  CAS  PubMed  Google Scholar 

  10. Wei H, Wang X, Gan B, Urvalek AM, Melkoumian ZK, Guan JL et al. Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem 2006; 281: 16664–16671.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J, Bian ZC, Yee K, Chen BP, Chien S, Guan JL . Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 2003; 11: 1503–1515.

    Article  CAS  PubMed  Google Scholar 

  12. Mehta TS, Lu H, Wang X, Urvalek AM, Nguyen KH, Monzur F et al. A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Res 2009; 19: 1098–1109.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Urvalek AM, Liu J, Zhao J . Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. J Biol Chem 2008; 283: 13934–13942.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Zhao J . KLF8 transcription factor participates in oncogenic transformation. Oncogene 2007; 26: 456–461.

    Article  PubMed  Google Scholar 

  15. Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu C et al. KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol 2013; 139: 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  16. Ding SZ, Yang YX, Li XL, Michelli-Rivera A, Han SY, Wang L et al. Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells. Toxicol Appl Pharmacol 2013; 269: 61–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu H, Wang X, Li T, Urvalek AM, Yu L, Li J et al. Identification of poly (ADP-ribose) polymerase-1 (PARP-1) as a novel Kruppel-like factor 8-interacting and -regulating protein. J Biol Chem 2011; 286: 20335–20344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW . To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 2003; 30: 247–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nielsen HL, Ronnov-Jessen L, Villadsen R, Petersen OW . Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer. Genomics 2002; 79: 703–710.

    Article  CAS  PubMed  Google Scholar 

  20. de Neergaard M, Kim J, Villadsen R, Fridriksdottir AJ, Rank F, Timmermans-Wielenga V et al. Epithelial-stromal interaction 1 (EPSTI1) substitutes for peritumoral fibroblasts in the tumor microenvironment. Am J Pathol 2010; 176: 1229–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA 2012; 109: 9623–9628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meyer H, Bug M, Bremer S . Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14: 117–123.

    Article  CAS  PubMed  Google Scholar 

  23. Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C . Tumor-endothelial interaction links the CD44(+)/CD24(−) phenotype with poor prognosis in early-stage breast cancer. Neoplasia 2009; 11: 987–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S et al. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 2008; 68: 5658–5668.

    Article  CAS  PubMed  Google Scholar 

  25. Yang T, Cai S, Zhang J, Lu J, Lin C, Zhai J et al. Krüppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One 2012; 7: 6.

    Google Scholar 

  26. Asai T, Tomita Y, Nakatsuka S, Hoshida Y, Myoui A, Yoshikawa H et al. VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn J Cancer Res 2002; 93: 296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zubair A, Frieri M . Role of nuclear factor-kB in breast and colorectal cancer. Curr Allergy Asthma Rep 2013; 13: 44–49.

    Article  CAS  PubMed  Google Scholar 

  28. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nuclear Med Mol Imaging 2004; 31: 740–751.

    Article  CAS  Google Scholar 

  29. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 2009; 106: 157–162.

    Article  CAS  PubMed  Google Scholar 

  30. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R . A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 2008; 3: 346–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010; 6: 217–227.

    Article  CAS  PubMed  Google Scholar 

  32. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao JH, Reiske H, Guan JL . Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 1998; 143: 1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao J, Pestell R, Guan JL . Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001; 12: 4066–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao J, Zheng C, Guan J . Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci 2000; 113 (Pt 17): 3063–3072.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr Vladimir Ponomarev of Memorial Sloan-Kettering Cancer Center for kindly providing the trimodal imaging reporter vector SFG-nTGL and Dr Qishan Lin of UAlbany for helping with the mass spectrometry. This work was supported by grants from NCI (CA132977) and Susan G. Komen for the Cure breast cancer foundation (KG090444 and KG080616) to JZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zhao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Lu, H., Shen, C. et al. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene 33, 4746–4755 (2014). https://doi.org/10.1038/onc.2013.415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.415

Keywords

This article is cited by

Search

Quick links