Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways

Abstract

The microRNA-200 (miR-200) family has a critical role in regulating epithelial–mesenchymal transition and cancer cell invasion through inhibition of the E-cadherin transcriptional repressors ZEB1 and ZEB2. Recent studies have indicated that the miR-200 family may exert their effects at distinct stages in the metastatic process, with an overall effect of enhancing metastasis in a syngeneic mouse breast cancer model. We find in a xenograft orthotopic model of breast cancer metastasis that ectopic expression of members of the miR-200b/200c/429, but not the miR-141/200a, functional groups limits tumour cell invasion and metastasis. Despite modulation of the ZEB1-E-cadherin axis, restoration of ZEB1 in miR-200b-expressing cells was not able to alter metastatic potential suggesting that other targets contribute to this process. Instead, we found that miR-200b repressed several actin-associated genes, with the knockdown of the ezrin-radixin-moesin family member moesin alone phenocopying the repression of cell invasion by miR-200b. Moesin was verified to be directly targeted by miR-200b, and restoration of moesin in miR-200b-expressing cells was sufficient to alleviate metastatic repression. In breast cancer cell lines and patient samples, the expression of moesin significantly inversely correlated with miR-200 expression, and high levels of moesin were associated with poor relapse-free survival. These findings highlight the context-dependent effects of miR-200 in breast cancer metastasis and demonstrate the existence of a moesin-dependent pathway, distinct from the ZEB1-E-cadherin axis, through which miR-200 can regulate tumour cell plasticity and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  Google Scholar 

  2. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    Article  CAS  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  4. Brabletz T . To differentiate or not—routes towards metastasis. Nat Rev Cancer 2012; 12: 425–436.

    Article  CAS  Google Scholar 

  5. Ramaswamy S, Ross KN, Lander ES, Golub TR . A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49–54.

    Article  CAS  Google Scholar 

  6. Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van't Veer LJ . Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 2003; 100: 15901–15905.

    Article  CAS  Google Scholar 

  7. Kowalski PJ, Rubin MA, Kleer CG . E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 2003; 5: R217–R222.

    Article  CAS  Google Scholar 

  8. Gunasinghe NP, Wells A, Thompson EW, Hugo HJ . Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev 2012; 31: 469–478.

    Article  CAS  Google Scholar 

  9. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 2008; 68: 937–945.

    Article  CAS  Google Scholar 

  10. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349–361.

    Article  CAS  Google Scholar 

  11. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED . Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 2006; 66: 11271–11278.

    Article  CAS  Google Scholar 

  12. Xue C, Plieth D, Venkov C, Xu C, Neilson EG . The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 2003; 63: 3386–3394.

    CAS  PubMed  Google Scholar 

  13. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  Google Scholar 

  14. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  Google Scholar 

  15. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  Google Scholar 

  16. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    Article  CAS  Google Scholar 

  17. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    Article  CAS  Google Scholar 

  18. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22: 1686–1698.

    Article  CAS  Google Scholar 

  19. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    Article  CAS  Google Scholar 

  20. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K . Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761–772.

    Article  CAS  Google Scholar 

  21. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  Google Scholar 

  22. Schickel R, Park SM, Murmann AE, Peter ME . miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010; 38: 908–915.

    Article  CAS  Google Scholar 

  23. Morel AP, Hinkal GW, Thomas C, Fauvet F, Courtois-Cox S, Wierinckx A et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet 2012; 8: e1002723.

    Article  CAS  Google Scholar 

  24. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK . MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009; 8: 1055–1066.

    Article  CAS  Google Scholar 

  25. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 2009; 69: 5820–5828.

    Article  CAS  Google Scholar 

  26. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 2008; 68: 537–544.

    Article  CAS  Google Scholar 

  27. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 2009; 23: 2140–2151.

    Article  CAS  Google Scholar 

  28. Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 2009; 4: e7181.

    Article  Google Scholar 

  29. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17: 1101–1108.

    Article  CAS  Google Scholar 

  30. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 2013; 62: 1315–1326.

    Article  CAS  Google Scholar 

  31. Lussier YA, Xing HR, Salama JK, Khodarev NN, Huang Y, Zhang Q et al. MicroRNA expression characterizes oligometastasis(es). PLoS One 2011; 6: e28650.

    Article  CAS  Google Scholar 

  32. Gravgaard KH, Lyng MB, Laenkholm AV, Sokilde R, Nielsen BS, Litman T et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 2012; 134: 207–217.

    Article  CAS  Google Scholar 

  33. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ . Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia 2013; 15: 180–191.

    Article  CAS  Google Scholar 

  34. Elson-Schwab I, Lorentzen A, Marshall CJ . MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One 2010; 5: pii e13176.

    Article  Google Scholar 

  35. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S et al. miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 2010; 29: 4297–4306.

    Article  CAS  Google Scholar 

  36. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  Google Scholar 

  37. Howe EN, Cochrane DR, Richer JK . Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 2011; 13: R45.

    Article  CAS  Google Scholar 

  38. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 2005; 37: 1289–1295.

    Article  CAS  Google Scholar 

  39. Sossey-Alaoui K, Bialkowska K, Plow EF . The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem 2009; 284: 33019–33029.

    Article  CAS  Google Scholar 

  40. Arpin M, Chirivino D, Naba A, Zwaenepoel I . Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 2011; 5: 199–206.

    Article  Google Scholar 

  41. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 2011; 6: e16915.

    Article  CAS  Google Scholar 

  42. Estecha A, Sanchez-Martin L, Puig-Kroger A, Bartolome RA, Teixido J, Samaniego R et al. Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci 2009; 122: 3492–3501.

    Article  CAS  Google Scholar 

  43. Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL . Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 2011; 22: 4750–4764.

    Article  CAS  Google Scholar 

  44. Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI, Chien CS et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol 2011; 223: 482–495.

    Article  CAS  Google Scholar 

  45. Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ . The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 2009; 66: 1682–1699.

    Article  CAS  Google Scholar 

  46. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR . miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA 2010; 107: 20828–20833.

    Article  CAS  Google Scholar 

  47. Shin JO, Nakagawa E, Kim EJ, Cho KW, Lee JM, Cho SW et al. miR-200b regulates cell migration via Zeb family during mouse palate development. Histochem Cell Biol 2012; 137: 459–470.

    Article  CAS  Google Scholar 

  48. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 2012; 32: 633–651.

    Article  CAS  Google Scholar 

  49. Charafe-Jauffret E, Monville F, Bertucci F, Esterni B, Ginestier C, Finetti P et al. Moesin expression is a marker of basal breast carcinomas. Int J Cancer 2007; 121: 1779–1785.

    Article  CAS  Google Scholar 

  50. Giusiano S, Secq V, Carcopino X, Carpentier S, Andrac L, Lavaut MN et al. Immunohistochemical profiling of node negative breast carcinomas allows prediction of metastatic risk. Int J Oncol 2010; 36: 889–898.

    PubMed  Google Scholar 

  51. Sun B, Zhang S, Zhang D, Li Y, Zhao X, Luo Y et al. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res 2008; 14: 7050–7059.

    Article  CAS  Google Scholar 

  52. Wang CC, Liau JY, Lu YS, Chen JW, Yao YT, Lien HC . Differential expression of moesin in breast cancers and its implication in epithelial-mesenchymal transition. Histopathology 2012; 61: 78–87.

    Article  Google Scholar 

  53. Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L et al. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat 2012; 132: 523–535.

    Article  CAS  Google Scholar 

  54. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Joan Massague for providing the MDA-MB-231 LM2 cell line and Dr Ross Dickins for providing the pLMP-puro-GFP construct. We thank Dr Agatha Labrinidis and Ms Yuka Harata-Lee for assistance with bioluminescence imaging and inoculation of tumour cells, respectively, Dr Peter Diamond for help with bone histological analysis and Professors Andreas Evdokiou and Shaun McColl for insightful discussions. This work was supported by fellowships from the National Breast Cancer Foundation of Australia (PAG, CPB and RLA, nos ECF-09-08 and PF-09-03) and grants from the National Health and Medical Research Council of Australia (PAG, YK-G, GJG, RLA and CNJ, nos 566871 and APP1020280), Cancer Council South Australia (GJG, PAG and YK-G) and Prostate Cancer Foundation of Australia (LAS, no. YI 0810).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P A Gregory or Y Khew-Goodall.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Roslan, S., Johnstone, C. et al. MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 33, 4077–4088 (2014). https://doi.org/10.1038/onc.2013.370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.370

Keywords

This article is cited by

Search

Quick links