Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia

Abstract

Pancreatic cancer remains as one of the most deadly cancers with few treatment options at late stages and little information about how it develops through earlier stages. Activating mutation of the Kras gene has been implicated in, but is not sufficient for, tumorigenesis. In mouse models of pancreatic cancer, loss of tumor suppressor genes in conjunction with Kras mutation leads to gradual stochastic acquisition of neoplastic precursors and carcinomas, whereas many cells remain phenotypically unaltered in younger mice. Here, we demonstrate that two oncogenic events, mutation of Kras and production of the growth factor heparin-binding epidermal growth factor-like growth factor (HB-EGF), are sufficient for rapid and complete neoplastic transformation of the exocrine pancreas. We found that macrophages are the major source of HB-EGF production in pancreatic cancer tissue samples, and that macrophages are present in high density and in close association with human pancreatic cancer lesions. In a mouse model, high macrophage density was observed at the earliest stages of neoplastic transformation. The consequence of elevated HB-EGF signaling was investigated without the confounding effects of other macrophage-produced factors via transgenic overexpression of the active form of HB-EGF. In this model, HB-EGF was sufficient to promote Kras-initiated tumorigenesis, inducing rapid and complete neoplastic transformation of the entire exocrine pancreas shortly after birth. HB-EGF overexpression and KrasG12D together, but neither alone, increased proliferation with increased cyclinD1 and decreased Cdkn2a/2d (p16/p19Ink4A/Arf). These findings establish the importance of oncogenic synergy in cancer initiation and promotion, and establish a molecular link between inflammation and the earliest stages of tumor induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    Article  CAS  Google Scholar 

  2. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL . KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 1988; 16: 7773–7782.

    Article  CAS  Google Scholar 

  3. Warshaw AL, Fernandez-del Castillo C . Pancreatic carcinoma. N Engl J Med 1992; 326: 455–465.

    Article  CAS  Google Scholar 

  4. Luttges J, Reinecke-Luthge A, Mollmann B, Menke MA, Clemens A, Klimpfinger M et al. Duct changes and K-ras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. Virchows Arch 1999; 435: 461–468.

    Article  CAS  Google Scholar 

  5. Brand RE, Lerch MM, Rubinstein WS, Neoptolemos JP, Whitcomb DC, Hruban RH et al. Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 2007; 56: 1460–1469.

    Article  Google Scholar 

  6. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001; 25: 579–586.

    Article  CAS  Google Scholar 

  7. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003; 17: 3112–3126.

    Article  CAS  Google Scholar 

  8. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  Google Scholar 

  9. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    Article  CAS  Google Scholar 

  10. Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS . Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res 2004; 64: 8804–8807.

    Article  CAS  Google Scholar 

  11. Hansel DE, Kern SE, Hruban RH . Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 2003; 4: 237–256.

    Article  CAS  Google Scholar 

  12. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 2006; 20: 3147–3160.

    Article  CAS  Google Scholar 

  13. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 2007; 67: 8121–8130.

    Article  CAS  Google Scholar 

  14. Kobrin MS, Funatomi H, Friess H, Buchler MW, Stathis P, Korc M . Induction and expression of heparin-binding EGF-like growth factor in human pancreatic cancer. Biochem Biophys Res Commun 1994; 202: 1705–1709.

    Article  CAS  Google Scholar 

  15. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG . Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992; 90: 1352–1360.

    Article  CAS  Google Scholar 

  16. Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y et al. Epiregulin is Up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun 2000; 273: 1019–1024.

    Article  CAS  Google Scholar 

  17. Holbro T, Hynes NE . ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44: 195–217.

    Article  CAS  Google Scholar 

  18. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612–1616.

    Article  CAS  Google Scholar 

  19. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH . Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67: 9518–9527.

    Article  CAS  Google Scholar 

  20. Ito Y, Higashiyama S, Takeda T, Yamamoto Y, Wakasa KI, Matsuura N . Expression of heparin-binding epidermal growth factor-like growth factor in pancreatic adenocarcinoma. Int J Gastrointest Cancer 2001; 29: 47–52.

    Article  CAS  Google Scholar 

  21. Ray KC, Blaine SA, Washington MK, Braun AH, Singh AB, Harris RC et al. Transmembrane and soluble isoforms of heparin-binding epidermal growth factor-like growth factor regulate distinct processes in the pancreas. Gastroenterology 2009; 137: 1785–1794.

    Article  CAS  Google Scholar 

  22. Doyle CM, Jamieson JD . Development of secretagogue response in rat pancreatic acinar cells. Dev Biol 1978; 65: 11–27.

    Article  CAS  Google Scholar 

  23. Means AL, Meszoely IM, Suzuki K, Miyamoto Y, Rustgi AK, Coffey RJ et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 2005; 132: 3767–3776.

    Article  CAS  Google Scholar 

  24. Odegaard JI, Chawla A . Alternative macrophage activation and metabolism. Annu Rev Pathol 2011; 6: 275–297.

    Article  CAS  Google Scholar 

  25. Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology 2009; 137: 1072–1082 82 e1-6.

    Article  CAS  Google Scholar 

  26. Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennstrom B . Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell 1983; 32: 227–238.

    Article  CAS  Google Scholar 

  27. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987; 49: 465–475.

    Article  CAS  Google Scholar 

  28. Thompson TC, Southgate J, Kitchener G, Land H . Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989; 56: 917–930.

    Article  CAS  Google Scholar 

  29. Hanlon L, Avila JL, Demarest RM, Troutman S, Allen M, Ratti F et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res 2010; 70: 4280–4286.

    Article  CAS  Google Scholar 

  30. Kinzler KW, Vogelstein B . Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.

    Article  CAS  Google Scholar 

  31. Carriere C, Young AL, Gunn JR, Longnecker DS, Korc M . Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun 2009; 382: 561–565.

    Article  CAS  Google Scholar 

  32. Morris JPt CanoDA, Sekine S, Wang SC, Hebrok M . Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 2010; 120: 508–520.

    Article  Google Scholar 

  33. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M . A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251: 936–939.

    Article  CAS  Google Scholar 

  34. Edwards JP, Zhang X, Frauwirth KA, Mosser DM . Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298–1307.

    Article  CAS  Google Scholar 

  35. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005; 65: 5278–5283.

    Article  CAS  Google Scholar 

  36. Blaine SA, Ray KC, Anunobi R, Gannon MA, Washington MK, Means AL . Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 2010; 137: 2289–2296.

    Article  CAS  Google Scholar 

  37. Gangarosa LM, Sizemore N, Graves-Deal R, Oldham SM, Der CJ, Coffey RJ . A raf-independent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J Biol Chem 1997; 272: 18926–18931.

    Article  CAS  Google Scholar 

  38. Oldham SM, Cox AD, Reynolds ER, Sizemore NS, Coffey RJ, Der CJ . Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade. Oncogene 1998; 16: 2565–2573.

    Article  CAS  Google Scholar 

  39. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012; 22: 304–317.

    Article  CAS  Google Scholar 

  40. Mohammed A, Janakiram NB, Li Q, Madka V, Ely M, Lightfoot S et al. The epidermal growth factor receptor inhibitor gefitinib prevents the progression of pancreatic lesions to carcinoma in a conditional LSL-KrasG12D/+ transgenic mouse model. Cancer Prev Res (Phila) 2010; 3: 1417–1426.

    Article  CAS  Google Scholar 

  41. Navas C, Hernandez-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M . EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 2012; 22: 318–330.

    Article  CAS  Google Scholar 

  42. Wang X, Proud CG . mTORC1 signaling: what we still don’t know. J Mol Cell Biol 2011; 3: 206–220.

    Article  CAS  Google Scholar 

  43. Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM . Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 2007; 12: 266–279.

    Article  CAS  Google Scholar 

  44. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M . Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. Embo J 1997; 16: 1268–1278.

    Article  CAS  Google Scholar 

  45. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV . The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002; 32: 128–134.

    Article  CAS  Google Scholar 

  46. Blaine SA, Ray KC, Branch KM, Robinson PS, Whitehead RH, Means AL . Epidermal growth factor receptor regulates pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2009; 297: G434–G441.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R Daniel Beauchamp for support and helpful discussions, Steven D Leach, Barbara Fingleton and Harold L Moses for critically reading the manuscript, and Heidi Moreno and Christian Kis for technical assistance. This work was supported by NIH grants CA123061 (ALM), P30DK058404 and P50CA095103 (MKW), CA136754, VA Merit, and the Knapp Chair in Pancreatic Cancer Research (HCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Means.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, K., Moss, M., Franklin, J. et al. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia. Oncogene 33, 823–831 (2014). https://doi.org/10.1038/onc.2013.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.3

Keywords

This article is cited by

Search

Quick links