Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma

Abstract

Heterozygous germline mutations in PHOX2B, a transcriptional regulator of sympathetic neuronal differentiation, predispose to diseases of the sympathetic nervous system, including neuroblastoma and congenital central hypoventilation syndrome (CCHS). Although the PHOX2B variants in CCHS largely involve expansions of the second polyalanine repeat within the C-terminus of the protein, those associated with neuroblastic tumors are nearly always frameshift and truncation mutations. To test the hypothesis that the neuroblastoma-associated variants exert their effects through loss or gain of protein–protein interactions, we performed a large-scale yeast two-hybrid screen using both wild-type (WT) and six different mutant PHOX2B proteins against over 10 000 human genes. The neuronal calcium sensor protein HPCAL1 (VILIP-3) exhibited strong binding to WT PHOX2B and a CCHS-associated polyalanine expansion mutant but only weakly or not at all to neuroblastoma-associated frameshift and truncation variants. We demonstrate that both WT PHOX2B and the neuroblastoma-associated R100L missense and the CCHS-associated alanine expansion variants induce nuclear translocation of HPCAL1 in a Ca2+-independent manner, while the neuroblastoma-associated 676delG frameshift and K155X truncation mutants impair subcellular localization of HPCAL1, causing it to remain in the cytoplasm. HPCAL1 did not appreciably influence the ability of WT PHOX2B to transactivate the DBH promoter, nor did it alter the decreased transactivation potential of PHOX2B variants in 293T cells. Abrogation of the PHOX2B–HPCAL1 interaction by shRNA knockdown of HPCAL1 in neuroblastoma cells expressing PHOX2B led to impaired neurite outgrowth with transcriptional profiles indicative of inhibited sympathetic neuronal differentiation. Our results suggest that certain PHOX2B variants associated with neuroblastoma pathogenesis, because of their inability to bind to key interacting proteins such as HPCAL1, may predispose to this malignancy by impeding the differentiation of immature sympathetic neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Maris JM . Recent advances in neuroblastoma. N Engl J Med 2010; 362: 2202–2211.

    Article  CAS  Google Scholar 

  2. Park JR, Eggert A, Caron H . Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 2008; 55: 97–120.

    Article  Google Scholar 

  3. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF . The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399: 366–370.

    Article  CAS  Google Scholar 

  4. Lo L, Morin X, Brunet JF, Anderson DJ . Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 1999; 22: 693–705.

    Article  CAS  Google Scholar 

  5. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF . The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399: 366–370.

    Article  CAS  Google Scholar 

  6. Dubreuil V, Hirsch MR, Pattyn A, Brunet JF, Goridis C . The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 2000; 127: 5191–5201.

    CAS  Google Scholar 

  7. Raabe EH, Laudenslager M, Winter C, Wasserman N, Cole K, LaQuaglia M et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 2008; 27: 469–476.

    Article  CAS  Google Scholar 

  8. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med GenetPart A 2003; 123A: 267–278.

    Article  Google Scholar 

  9. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003; 33: 459–461.

    Article  CAS  Google Scholar 

  10. Mosse YP, Laudenslager M, Khazi D, Carlisle AJ, Winter CL, Rappaport E et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 2004; 75: 727–730.

    Article  CAS  Google Scholar 

  11. Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, de Pontual L, Schleiermacher G et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004; 74: 761–764.

    Article  CAS  Google Scholar 

  12. Matera I, Bachetti T, Puppo F, Di Duca M, Morandi F, Casiraghi GM et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset central hypoventilation syndrome. J Med Genet 2004; 41: 373–380.

    Article  CAS  Google Scholar 

  13. van Limpt V, Schramm A, van Lakeman A, Sluis P, Chan A, van Noesel M et al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 2004; 23: 9280–9288.

    Article  CAS  Google Scholar 

  14. Reiff T, Tsarovina K, Majdazari A, Schmidt M, del Pino I, Rohrer H . Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 2010; 30: 905–915.

    Article  CAS  Google Scholar 

  15. Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF et al. Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest 2012; 122: 3145–3158.

    Article  CAS  Google Scholar 

  16. Pei D, Luther W, Wang W, Paw BH, Stewart RA, George RE . Neuroblastoma-associated PHOX2B mutations impair sympathetic neuronal differentiation in Zebrafish modal. PLOS Genet 2013; 9: e1003533.

    Article  CAS  Google Scholar 

  17. Vidal M, Cusick ME, Barabasi AL . Interactome networks and human disease. Cell 2011; 144: 986–998.

    Article  CAS  Google Scholar 

  18. Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N et al. Edgetic perturbation models of human inherited disorders. Mol Syst Biol 2009; 5: 321.

    Article  Google Scholar 

  19. Dreze M, Charloteaux B, Milstein S, Vidalain PO, Yildirim MA, Zhong Q et al. ‘Edgetic’ perturbation of a C. elegans BCL2 ortholog Nat Methods 2009; 6: 843–849.

    Article  CAS  Google Scholar 

  20. Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 2008; 452: 713–718.

    Article  CAS  Google Scholar 

  21. Wu HT, Su YN, Hung CC, Hsieh WS, Wu KJ . Interaction between PHOX2B and CREBBP mediates synergistic activation: mechanistic implications of PHOX2B mutants. Hum Mutat 2009; 30: 655–660.

    Article  CAS  Google Scholar 

  22. Hong SJ, Chae H, Lardaro T, Hong S, Kim KS . Trim11 increases expression of dopamine beta-hydroxylase gene by interacting with Phox2b. Biochem Biophys Res Commun 2008; 368: 650–655.

    Article  CAS  Google Scholar 

  23. van Limpt V, Chan A, Schramm A, Eggert A, Versteeg R . Phox2B mutations and the Delta-Notch pathway in neuroblastoma. Cancer Lett 2005; 228: 59–63.

    Article  CAS  Google Scholar 

  24. Trang H, Laudier B, Trochet D, Munnich A, Lyonnet S, Gaultier C et al. PHOX2B gene mutation in a patient with late-onset central hypoventilation. Pediatr Pulmonol 2004; 38: 349–351.

    Article  Google Scholar 

  25. Dreze M, Monachello D, Lurin C, Cusick ME, Hill DE, Vidal M et al. High-quality binary interactome mapping. Methods Enzymol 2010; 470: 281–315.

    Article  CAS  Google Scholar 

  26. Lamesch P, Li N, Milstein S, Fan C, Hao T, Szabo G et al. hORFeome v3.1: a resource of human open reading frames representing over 10 000 human genes. Genomics 2007; 89: 307–315.

    Article  CAS  Google Scholar 

  27. Haynes LP, Burgoyne RD . Unexpected tails of a Ca2+ sensor. Nat Chem Biol 2008; 4: 90–91.

    Article  CAS  Google Scholar 

  28. Yang C, Kim HS, Seo H, Kim CH, Brunet JF, Kim KS . Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine beta-hydroxylase gene. J Neurochem 1998; 71: 1813–1826.

    Article  CAS  Google Scholar 

  29. Adachi M, Browne D, Lewis EJ . Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol 2000; 19: 539–554.

    Article  CAS  Google Scholar 

  30. Bachetti T, Matera I, Borghini S, Di Duca M, Ravazzolo R, Ceccherini I . Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet 2005; 14: 1815–1824.

    Article  CAS  Google Scholar 

  31. Taraviras S, Olli-Lahdesmaki T, Lymperopoulos A, Charitonidou D, Mavroidis M, Kallio J et al. Subtype-specific neuronal differentiation of PC12 cells transfected with alpha2-adrenergic receptors. Eur J Cell Biol 2002; 81: 363–374.

    Article  CAS  Google Scholar 

  32. Hansford LM, Smith SA, Haber M, Norris MD, Cheung B, Marshall GM . Cloning and characterization of the human neural cell adhesion molecule CNTN4 (alias BIG-2). Cytogenet Genome Res 2003; 101: 17–23.

    Article  CAS  Google Scholar 

  33. Frumm S, Fan Z, Ross K, Duvall J, Gupta S, VerPlank L et al. Selective HDAC/HDAC2 inhibitors induce neuroblastoma differentiation. Chem Biol 2013; 20: 713–725.

    Article  CAS  Google Scholar 

  34. Braunewell KH, Klein-Szanto AJ . Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Cell Tissue Res 2009; 335: 301–316.

    Article  CAS  Google Scholar 

  35. Paterlini M, Revilla V, Grant AL, Wisden W . Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 2000; 99: 205–216.

    Article  CAS  Google Scholar 

  36. Burgoyne RD . Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8: 182–193.

    Article  CAS  Google Scholar 

  37. Rustandi RR, Baldisseri DM, Weber DJ . Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 2000; 7: 570–574.

    Article  CAS  Google Scholar 

  38. Ikura M, Yap KL . Where cancer meets calcium—p53 crosstalk with EF-hands. Nat Struct Biol 2000; 7: 525–527.

    Article  CAS  Google Scholar 

  39. Ikura M, Osawa M, Ames JB . The role of calcium-binding proteins in the control of transcription: structure to function. Bioessays 2002; 24: 625–636.

    Article  CAS  Google Scholar 

  40. Spilker C, Gundelfinger ED, Braunewell KH . Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: from subcellular localization to cellular function. Biochim Biophys Acta 2002; 1600: 118–127.

    Article  CAS  Google Scholar 

  41. O'Callaghan DW, Tepikin AV, Burgoyne RD . Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. J Cell Biol 2003; 163: 715–721.

    Article  CAS  Google Scholar 

  42. Jheng FF, Wang L, Lee L, Chang LS . Functional contribution of Ca2+ and Mg2+ to the intermolecular interaction of visinin-like proteins. Protein J 2006; 25: 250–256.

    Article  CAS  Google Scholar 

  43. Zellmer E, Zhang Z, Greco D, Rhodes J, Cassel S, Lewis EJ . A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J Neurosci 1995; 15: 8109–8120.

    Article  CAS  Google Scholar 

  44. Swanson DJ, Zellmer E, Lewis EJ . The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J Biol Chem 1997; 272: 27382–27392.

    Article  CAS  Google Scholar 

  45. Lenz SE, Henschel Y, Zopf D, Voss B, Gundelfinger ED . VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Brain Res Mol Brain Res 1992; 15: 133–140.

    Article  CAS  Google Scholar 

  46. Braunewell KH, Dwary AD, Richter F, Trappe K, Zhao C, Giegling I et al. Association of VSNL1 with schizophrenia, frontal cortical function, and biological significance for its gene product as a modulator of cAMP levels and neuronal morphology. Translational Psychiatry 2011; 1: e22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Christo Goridis for the generous gift of the PHOX2B antibody. We thank Stacey Frumm and Dr Kimberly Stegmaier for data regarding the neuroblastoma cell differentiation signature before publication. This study was supported by Alex’s Lemonade Stand Foundation (to REG), Abraham Research Fund (to WW), National Cancer Institute Grant R33CA132073 (to MV), National Human Genome Research Grants R01HG001715 and P50HG004233 (to MV and DEH) and The Ellison Foundation (to MV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E George.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhong, Q., Teng, L. et al. Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma. Oncogene 33, 3316–3324 (2014). https://doi.org/10.1038/onc.2013.290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.290

Keywords

This article is cited by

Search

Quick links