Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism

Abstract

The mechanisms that coordinate the final mitotic divisions of terminally differentiated bone marrow (BM) erythroid cells with components of their structural and functional maturation program remain largely undefined. We previously identified phenotypes resembling those found in early-stage myelodysplastic syndromes (MDS), including ineffective erythropoiesis, morphologic dysplasia and BM hyper-cellularity, in a knock-in mouse model in which cyclin E mutations were introduced at its two Cdc4 phosphodegrons (CPDs) to ablate Fbw7-dependent ubiquitination and degradation. Here, we have examined the physiologic consequences of cyclin E dysregulation in BM erythroid cells during terminal maturation in vivo. We found that cyclin E protein levels in BM erythroid cells are dynamically regulated in a CPD-dependent manner and that disruption of Fbw7-dependent cyclin E regulation impairs terminal erythroid cell maturation at a discrete stage before enucleation. At this stage of erythroid cell maturation, CPD phosphorylation of cyclin E regulates both cell-cycle arrest and survival. We also found that normal regulation of cyclin E restrains mitochondrial reactive oxygen species (ROS) accumulation and expression of genes that promote mitochondrial biogenesis and oxidative metabolism during terminal erythroid maturation. In the setting of dysregulated cyclin E expression, p53 is activated in BM erythroid cells as part of a DNA damage response-type pathway, which mitigates ineffective erythropoiesis, in contrast to the role of p53 induction in other models of dyserythropoiesis. Finally, cyclin E dysregulation and ROS accumulation induce histone H3 lysine 9 hyper-methylation and disrupt components of the normal terminal erythroid maturation gene expression program. Thus, ubiquitin-proteasome pathway control of G1-to-S-phase progression is intrinsically linked to regulation of metabolism and gene expression in terminally differentiating BM erythroid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP, Segal S . Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 1986; 322: 748–750.

    Article  CAS  PubMed  Google Scholar 

  2. Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M et al. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol 2010; 8: pii: e1000484.

    Article  Google Scholar 

  3. Kinross KM, Clark AJ, Iazzolino RM, Humbert PO . E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 2006; 108: 886–895.

    Article  CAS  PubMed  Google Scholar 

  4. Li FX, Zhu JW, Hogan CJ, DeGregori J . Defective gene expression, S phase progression, and maturation during hematopoiesis in E2F1/E2F2 mutant mice. Mol Cell Biol 2003; 23: 3607–3622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dirlam A, Spike BT, Macleod KF . Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. Mol Cell Biol 2007; 27: 8713–8728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sankaran VG, Orkin SH, Walkley CR . Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev 2008; 22: 463–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J . Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Mol Cell Biol 2000; 20: 3497–3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welcker M, Clurman BE . FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8: 83–93.

    Article  CAS  PubMed  Google Scholar 

  9. Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID et al. Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 2008; 22: 1677–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R et al. The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J 2010; 29: 4106–4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294: 173–177.

    Article  CAS  PubMed  Google Scholar 

  13. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43: 673–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N . Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci USA 2009; 106: 17413–17418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  17. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  18. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  19. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . The antioxidant function of the p53 tumor suppressor. Nat Med 2005; 11: 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011; 117: 2567–2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaako P, Flygare J, Olsson K, Quere R, Ehinger M, Henson A et al. Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood 2011; 118: 6087–6096.

    Article  CAS  PubMed  Google Scholar 

  22. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  23. Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C, Chavey C et al. E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 2011; 13: 1146–1152.

    Article  CAS  PubMed  Google Scholar 

  24. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998; 18: 231–236.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly DP, Scarpulla RC . Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18: 357–368.

    Article  CAS  PubMed  Google Scholar 

  26. Santos JH, Mandavilli BS, Van Houten B . Measuring oxidative mtDNA damage and repair using quantitative PCR. Methods Mol Biol 2002; 197: 159–176.

    CAS  PubMed  Google Scholar 

  27. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454: 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500–19505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang YA, Sanalkumar R, O'Geen H, Linnemann AK, Chang CJ, Bouhassira EE et al. Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 2012; 32: 226–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss MJ, Yu C, Orkin SH . Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 1997; 17: 1642–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singer JD, Gurian-West M, Clurman B, Roberts JM . Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 1999; 13: 2375–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kossatz U, Breuhahn K, Wolf B, Hardtke-Wolenski M, Wilkens L, Steinemann D et al. The cyclin E regulator cullin 3 prevents mouse hepatic progenitor cells from becoming tumor-initiating cells. J Clin Invest 2010; 120: 3820–3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minella AC, Grim JE, Welcker M, Clurman BE . p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene 2007; 26: 6948–6953.

    Article  CAS  PubMed  Google Scholar 

  35. Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE . p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol 2002; 12: 1817–1827.

    Article  CAS  PubMed  Google Scholar 

  36. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325–339.

    Article  CAS  PubMed  Google Scholar 

  37. Balaban RS, Nemoto S, Finkel T . Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495.

    Article  CAS  PubMed  Google Scholar 

  38. Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 2007; 204: 2875–2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu Y, Sengupta T, Kukreja L, Minella AC . MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. J Biol Chem 2010; 285: 34439–34446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woo RA, Poon RY . Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev 2004; 18: 1317–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leung CG, Xu Y, Mularski B, Liu H, Gurbuxani S, Crispino JD . Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J Exp Med 2007; 204: 1603–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  44. Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 2006; 107: 341–348.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Navdeep Chandel and Laura Sena (Northwestern University) for providing reagents as well as invaluable advice. We also thank Dr Amit Verma (Albert Einstein College of Medicine) for helpful discussions. This work was supported by NIH grant R01HL098608 and funding from the Leukemia Research Foundation, the Sidney Kimmel Foundation for Cancer Research, the American Cancer Society and the American Society of Hematology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Minella.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Swartz, K., Siu, K. et al. Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 33, 3161–3171 (2014). https://doi.org/10.1038/onc.2013.289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.289

Keywords

This article is cited by

Search

Quick links