Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PDGFRA alterations in cancer: characterization of a gain-of-function V536E transmembrane mutant as well as loss-of-function and passenger mutations

Abstract

Activating mutations in the platelet-derived growth factor (PDGF) receptor alpha (PDGFRA) have been described in patients with gastrointestinal stromal tumors or myeloid malignancies associated with hypereosinophilia. These patients respond well to imatinib mesylate, raising the question as to whether patients with a PDGF receptor mutation in other tumor types should receive a tyrosine kinase inhibitor treatment. We characterized 10 novel somatic point mutations in PDGFRA that have been reported in isolated cases of glioblastoma, melanoma, acute myeloid leukemia, peripheral nerve sheath tumors and neuroendocrine carcinoma. The PDGFRA transmembrane domain mutation V536E stimulated Ba/F3 cell growth and signaling via ERK and STAT5 in the absence of ligand. This mutant, identified in glioblastoma, was strongly inhibited by imatinib. Modeling suggested that the mutation modulates the packing of the transmembrane domain helices in the receptor dimer. By contrast, two mutations in highly conserved residues affected the receptor traffic to the cell surface or kinase activity, thereby preventing the response to PDGF. The other mutations had no significant impact on the receptor activity. This functional analysis matched the predictions of SIFT and PolyPhen for only five mutations and these algorithms do not discriminate gain from loss of function. Finally, an E996K variant that had been identified in a melanoma cell line was not expressed in these cells. Altogether, several newly identified PDGFRA mutations do not activate the receptor and may therefore represent passenger mutations. Our results also underline the importance of characterizing novel kinase alterations in cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andrae J, Gallini R, Betsholtz C . Role of platelet-derived growth factors inphysiology and medicine. Genes Dev 2008; 22: 1276–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiara F, Bishayee S, Heldin CH, Demoulin JB . Autoinhibition of the platelet-derived growth factor beta-receptor tyrosine kinase by its C-terminal tail. J Biol Chem 2004; 279: 19732–19738.

    Article  CAS  PubMed  Google Scholar 

  3. Toffalini F, Demoulin JB . New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010; 116: 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  4. Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005; 23: 5357–5364.

    Article  CAS  PubMed  Google Scholar 

  5. Demoulin JB, Montano-Almendras CP . Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res 2012; 2: 44–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Medves S, Demoulin JB . Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16: 237–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  8. Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilicsyndrome induce growth factor independence and leukemia-like disease. Blood 2011; 117: 2935–2943.

    Article  CAS  PubMed  Google Scholar 

  9. Huss S, Wardelmann E, Goltz D, Binot E, Hartmann W, Merkelbach-Bruse S et al. Activating PDGFRA mutations in inflammatory fibroid polyps occur in exons 12, 14 and 18 and are associated with tumour localization. Histopathology 2012; 61: 59–68.

    Article  PubMed  Google Scholar 

  10. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastomacharacterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarke ID, Dirks PB . A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene 2003; 22: 722–733.

    Article  CAS  PubMed  Google Scholar 

  12. Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M et al. PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplifiedglioblastomas. Genes Dev 2010; 24: 2205–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David M, Cross NC, Burgstaller S, Chase A, Curtis C, Dang R et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007; 109: 61–64.

    Article  CAS  PubMed  Google Scholar 

  14. Metzgeroth G, Walz C, Erben P, Popp H, Schmitt-Graeff A, Haferlach C et al. Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a phase-II study. Br J Haematol 2008; 143: 707–715.

    Article  CAS  PubMed  Google Scholar 

  15. Paulsson J, Lindh MB, Jarvius M, Puputti M, Nister M, Nupponen NN et al. Prognostic but not predictive role of platelet-derived growth factor receptors in patients with recurrent glioblastoma. Int J Cancer 2011; 128: 1981–1988.

    Article  CAS  PubMed  Google Scholar 

  16. Dresemann G, Weller M, Rosenthal MA, Wedding U, Wagner W, Engel E et al. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neurooncol 2010; 96: 393–402.

    Article  CAS  PubMed  Google Scholar 

  17. Holtkamp N, Okuducu AF, Mucha J, Afanasieva A, Hartmann C, Atallah I et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis 2006; 27: 664–671.

    Article  CAS  PubMed  Google Scholar 

  18. Hiwatari M, Taki T, Tsuchida M, Hanada R, Hongo T, Sako M et al. Novel missense mutations in the tyrosine kinase domain of the platelet-derived growth factor receptor alpha(PDGFRA) gene in childhood acute myeloid leukemia with t(8;21)(q22;q22) or inv(16)(p13q22). Leukemia 2005; 19: 476–477.

    Article  CAS  PubMed  Google Scholar 

  19. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 2005; 102: 14344–14349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alentorn A, Marie Y, Carpentier C, Boisselier B, Giry M, Labussiere M et al. Prevalence, clinico-pathological value, and co-occurrence of PDGFRA abnormalities in diffuse gliomas. Neuro Oncol 2012; 14: 1393–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toffalini F, Hellberg C, Demoulin JB . Critical role of the platelet-derived growth factor receptor (PDGFR)-beta transmembrane domain in the TEL-PDGFRbeta cytosolic oncoprotein. J Biol Chem 2010; 285: 12268–12278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keating MT, Harryman CC, Williams LT . Platelet-derived growth factor receptor inducibility is acquired immediately after translation and does not requireglycosylation. J Biol Chem 1989; 264: 9129–9132.

    CAS  PubMed  Google Scholar 

  24. Burke CL, Lemmon MA, Coren BA, Engelman DM, Stern DF . Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997; 14: 687–696.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Yuzawa S, Schlessinger J . Contacts between membrane proximal regions of the PDGF receptor ectodomain are required for receptor activation but not for receptor dimerization. Proc Natl Acad Sci USA 2008; 105: 7681–7686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polyansky AA, Volynsky PE, Efremov RG . Multistate organization of transmembrane helical protein dimers governed by the host membrane. J Am Chem Soc 2012; 134: 14390–14400.

    Article  CAS  PubMed  Google Scholar 

  27. Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D et al. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) beta transmembrane segment. J Biol Chem 2012; 287: 26178–26186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bell CA, Tynan JA, Hart KC, Meyer AN, Robertson SC, Donoghue DJ . Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase. Mol Biol Cell 2000; 11: 3589–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE et al. Architecture and membrane interactions of the EGF receptor. Cell 2013; 152: 557–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 2013; 152: 543–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J . Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 2007; 130: 323–334.

    Article  CAS  PubMed  Google Scholar 

  32. Omura T, Heldin CH, Ostman A . Immunoglobulin-like domain 4-mediated receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem 1997; 272: 12676–12682.

    Article  CAS  PubMed  Google Scholar 

  33. Schonherr C, Ruuth K, Eriksson T, Yamazaki Y, Ottmann C, Combaret V et al. The neuroblastoma ALK(I1250T) mutation is a kinase-dead RTK in vitro and in vivo. Transl Oncol 2011; 4: 258–265.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Demoulin JB, Seo JK, Ekman S, Grapengiesser E, Hellman U, Ronnstrand L et al. Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived growth factor) receptor regulates actin cytoskeleton reorganization by PDGF. Biochem J 2003; 376: 505–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM . PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBOJ 2006; 25: 910–920.

    Article  CAS  Google Scholar 

  36. Frohling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007; 12: 501–513.

    Article  CAS  PubMed  Google Scholar 

  37. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 2013; 110: 1398–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J et al. The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. Haematologica 2009; 94: 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Demoulin JB, Uyttenhove C, Van Roost E, de Lestre B, Donckers D, Van Snick J et al. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 1996; 16: 4710–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montano-Almendras CP, Essaghir A, Schoemans H, Varis I, Noel LA, Velghe AI et al. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor proliferation and differentiation into eosinophils: role of NF-kappaB. Haematologica 2012; 97: 1064–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Demoulin JB, Ericsson J, Kallin A, Rorsman C, Ronnstrand L, Heldin CH . Platelet-derived growth factor stimulates membrane lipid synthesis through activation of phosphatidylinositol 3-kinase and sterol regulatory element-binding proteins. J Biol Chem 2004; 279: 35392–35402.

    Article  CAS  PubMed  Google Scholar 

  43. Schonherr C, Ruuth K, Kamaraj S, Wang CL, Yang HL, Combaret V et al. Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012; 31: 5193–5200.

    Article  CAS  PubMed  Google Scholar 

  44. Medves S, Noel LA, Montano-Almendras CP, Albu RI, Schoemans H, Constantinescu SN et al. Multiple oligomerization domains of KANK1-PDGFRB are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK. Haematologica 2011; 96: 1406–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Francis Brasseur (Ludwig Institute for Cancer Research, Brussels, Belgium) for the LB373-MEL cell line and Stefan Constantinescu (de Duve Institute) for advices. This work was supported by the Salus Sanguinis Foundation and a grant from ‘Action de Recherches Concertées’ (Communauté Française de Belgique, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-B Demoulin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velghe, A., Van Cauwenberghe, S., Polyansky, A. et al. PDGFRA alterations in cancer: characterization of a gain-of-function V536E transmembrane mutant as well as loss-of-function and passenger mutations. Oncogene 33, 2568–2576 (2014). https://doi.org/10.1038/onc.2013.218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.218

Keywords

This article is cited by

Search

Quick links