Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer driver–passenger distinction via sporadic human and dog cancer comparison: a proof-of-principle study with colorectal cancer

Abstract

Herein we report a proof-of-principle study illustrating a novel dog–human comparison strategy that addresses a central aim of cancer research, namely cancer driver–passenger distinction. We previously demonstrated that sporadic canine colorectal cancers (CRCs) share similar molecular pathogenesis mechanisms as their human counterparts. In this study, we compared the genome-wide copy number abnormalities between 29 human and 10 canine sporadic CRCs. This led to the identification of 73 driver candidate genes (DCGs), altered in both species, and with 27 from the whole genome and 46 from dog–human genomic rearrangement breakpoint (GRB) regions, as well as 38 passenger candidate genes (PCGs), altered in humans only and located in GRB regions. We noted that DCGs significantly differ from PCGs in every analysis conducted to assess their cancer relevance and biological functions. Importantly, although PCGs are not enriched in any specific functions, DCGs possess significantly enhanced functionality closely associated with cell proliferation and death regulation, as well as with epithelial cell apicobasal polarity establishment/maintenance. These observations support the notion that, in sporadic CRCs of both species, cell polarity genes not only contribute in preventing cancer cell invasion and spreading, but also likely serve as tumor suppressors by modulating cell growth. This pilot study validates our novel strategy and has uncovered four new potential cell polarity and colorectal tumor suppressor genes (RASA3, NUPL1, DENND5A and AVL9). Expansion of this study would make more driver–passenger distinctions for cancers with large genomic amplifications or deletions, and address key questions regarding the relationship between cancer pathogenesis and epithelial cell polarity control in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Haber DA, Settleman J . Cancer: drivers and passengers. Nature 2007; 446: 145–146.

    Article  CAS  Google Scholar 

  2. Stratton MR, Campbell PJ, Futreal PA . The cancer genome. Nature 2009; 458: 719–724.

    Article  CAS  Google Scholar 

  3. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  Google Scholar 

  4. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR et al. International network of cancer genome projects. Nature 2010; 464: 993–998.

    Article  CAS  Google Scholar 

  5. Cancer Genome Atlas Network, Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  6. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  Google Scholar 

  7. Boyko AR . The domestic dog: man’s best friend in the genomic era. Genome Biol 2011; 12: 216.

    Article  CAS  Google Scholar 

  8. Neff MW, Rine J . A fetching model organism. Cell 2006; 124: 229–231.

    Article  CAS  Google Scholar 

  9. Rowell JL, McCarthy DO, Alvarez CE . Dog models of naturally occurring cancer. Trends Mol Med 2011; 17: 380–388.

    Article  CAS  Google Scholar 

  10. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438: 803–819.

    Article  CAS  Google Scholar 

  11. Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M et al. Initial sequence and comparative analysis of the cat genome. Genome Res 2007; 17: 1675–1689.

    Article  CAS  Google Scholar 

  12. Ji X, Zhao S . DA and Xiao-two giant and composite LTR-retrotransposon-like elements identified in the human genome. Genomics 2008; 91: 249–258.

    Article  CAS  Google Scholar 

  13. Kinzler KW, Vogelstein B . Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.

    Article  CAS  Google Scholar 

  14. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Article  Google Scholar 

  15. Tang J, Le S, Sun L, Yan X, Zhang M, Macleod J et al. Copy number abnormalities in sporadic canine colorectal cancers. Genome Res 2010; 20: 341–350.

    Article  CAS  Google Scholar 

  16. Youmans L, Taylor C, Shin E, Harrell A, Ellis AE, Seguin B et al. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal cancers. PLoS One 2012; 7: e50813.

    Article  CAS  Google Scholar 

  17. Camps J, Grade M, Nguyen QT, Hormann P, Becker S, Hummon AB et al. Chromosomal breakpoints in primary colon cancer cluster at sites of structural variants in the genome. Cancer Res 2008; 68: 1284–1295.

    Article  CAS  Google Scholar 

  18. Igaki T, Pagliarini RA, Xu T . Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Current Biol 2006; 16: 1139–1146.

    Article  CAS  Google Scholar 

  19. Royer C, Lu X . Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 2011; 18: 1470–1477.

    Article  CAS  Google Scholar 

  20. Lee M, Vasioukhin V . Cell polarity and cancer—cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 2008; 121 (Pt 8): 1141–1150.

    Article  CAS  Google Scholar 

  21. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003; 423: 825–837.

    Article  CAS  Google Scholar 

  22. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 2010; 40: 34–49.

    Article  CAS  Google Scholar 

  23. Amann T, Hellerbrand C . GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets 2009; 13: 1411–1427.

    Article  CAS  Google Scholar 

  24. Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG . Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. Handb Exp Pharmacol 2009; 193: 123–159.

    Article  CAS  Google Scholar 

  25. Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 2009; 106: 9435–9440.

    Article  CAS  Google Scholar 

  26. Bouanene H, Miled A . Conflicting views on the molecular structure of the cancer antigen CA125/MUC16. Dis Markers 2010; 28: 385–394.

    Article  CAS  Google Scholar 

  27. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39 (Database issue): D945–D950.

    Article  CAS  Google Scholar 

  28. Lin J, Gan CM, Zhang X, Jones S, Sjoblom T, Wood LD et al. A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 2007; 17: 1304–1318.

    Article  CAS  Google Scholar 

  29. Jordan MA, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

    Article  CAS  Google Scholar 

  30. Llovera L, Mansilla S, Portugal J . Apoptotic-like death occurs through a caspase-independent route in colon carcinoma cells undergoing mitotic catastrophe. Cancer Lett 2012; 326: 114–121.

    Article  CAS  Google Scholar 

  31. Harsay E, Schekman R . Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 2007; 18: 1203–1219.

    Article  CAS  Google Scholar 

  32. Nafisi H, Banihashemi B, Daigle M, Albert PR . GAP1(IP4BP)/RASA3 mediates Galphai-induced inhibition of mitogen-activated protein kinase. J Biol Chem 2008; 283: 35908–35917.

    Article  CAS  Google Scholar 

  33. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  Google Scholar 

  34. Dehal P, Predki P, Olsen AS, Kobayashi A, Folta P, Lucas S et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 2001; 293: 104–111.

    Article  CAS  Google Scholar 

  35. Nelson WJ . Adaptation of core mechanisms to generate cell polarity. Nature 2003; 422: 766–774.

    Article  CAS  Google Scholar 

  36. Bryant DM, Mostov KE . From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 2008; 9: 887–901.

    Article  CAS  Google Scholar 

  37. Li R, Gundersen GG . Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 2008; 9: 860–873.

    Article  CAS  Google Scholar 

  38. Iden S, Collard JG . Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 2008; 9: 846–859.

    Article  CAS  Google Scholar 

  39. Bachmann O, Juric M, Seidler U, Manns MP, Yu H . Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 2011; 201: 33–46.

    Article  CAS  Google Scholar 

  40. Belleannee C, Da Silva N, Shum WW, Brown D, Breton S . Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am J Physiol Cell Physiol 2010; 298: C817–C830.

    Article  CAS  Google Scholar 

  41. Barrios A, Poole RJ, Durbin L, Brennan C, Holder N, Wilson SW . Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Current Biol 2003; 13: 1571–1582.

    Article  CAS  Google Scholar 

  42. Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL . Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31: 552–562.

    Article  Google Scholar 

  43. Krais AM, Hautefeuille AH, Cros MP, Krutovskikh V, Tournier JM, Birembaut P et al. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression. Carcinogenesis 2011; 32: 1388–1395.

    Article  CAS  Google Scholar 

  44. Levy F, Muehlethaler K, Salvi S, Peitrequin AL, Lindholm CK, Cerottini JC et al. Ubiquitylation of a melanosomal protein by HECT-E3 ligases serves as sorting signal for lysosomal degradation. Mol Biol Cell 2005; 16: 1777–1787.

    Article  CAS  Google Scholar 

  45. Lott ST, Chen N, Chandler DS, Yang Q, Wang L, Rodriguez M et al. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med 2009; 6: e1000068.

    Article  Google Scholar 

  46. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  Google Scholar 

  47. Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C et al. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res 2009; 69: 7412–7421.

    Article  CAS  Google Scholar 

  48. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 2007; 104: 20007–20012.

    Article  CAS  Google Scholar 

  49. Ji X, Tang J, Halberg R, Busam D, Ferriera S, Pena MM et al. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study. BMC Cancer 2010; 10: 426.

    Article  CAS  Google Scholar 

  50. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE et al. LINE-1 retrotransposition activity in human genomes. Cell 2010; 141: 1159–1170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Huan Xiong for her work; Dr Bert Vogelstein for providing various CRC lines and Dr Timothy A Chan of Memorial Sloan-Kettering Cancer Center for providing the IHA cells; and Drs Dong M Shin, J David Puett, Claiborne Glover, Georgia Chen,and Lisa J Stubb for their help and advice on this study. This work was funded by the American Cancer Society and the Georgia Cancer Coalition (principal investigator (PI): S Zhao), as well as NCI P50 CA128613 (PI: Dr Dong M Shin) and GM085354 (PI: Dr Stephen Dalton).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Zhao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Li, Y., Lyon, K. et al. Cancer driver–passenger distinction via sporadic human and dog cancer comparison: a proof-of-principle study with colorectal cancer. Oncogene 33, 814–822 (2014). https://doi.org/10.1038/onc.2013.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.17

Keywords

This article is cited by

Search

Quick links