Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autocrine IL-1β-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFα signalling to carcinoma-associated fibroblasts

Abstract

The invasion of squamous cell carcinoma (SCC) is a significant cause of morbidity and mortality. Here, we identify an E3 ligase, Traf6 and a de-ubiquitinating enzyme, Cezanne/ZA20D1, as important regulators of this process in organotypic models. Traf6 can promote the formation of Cdc42-dependent F-actin microspikes. Furthermore, Traf6 has a key role in autocrine interleukin-1β signalling in SCC cells, which in turn is required to drive the expression of tumour necrosis factor α (TNFα). TNFα acts in a paracrine manner to increase the invasion-promoting potential of carcinoma-associated fibroblasts (CAFs). Exogenous TNFα signalling can restore invasion in cells depleted of Traf6. In conclusion, Traf6 has two important roles in SCC invasion: it promotes cell intrinsic Cdc42-dependent regulation of the actin cytoskeleton and enables production of the paracrine signal, TNFα, that enhances the activity of CAFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gil Z, Fliss DM . Contemporary management of head and neck cancers. Isr Med Assoc J 2009; 11: 296–300.

    PubMed  Google Scholar 

  2. Shah JP, Gil Z . Current concepts in management of oral cancer—surgery. Oral Oncol 2009; 45: 394–401.

    Article  PubMed  Google Scholar 

  3. Yao M, Epstein JB, Modi BJ, Pytynia KB, Mundt AJ, Feldman LE . Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol 2007; 43: 213–223.

    Article  PubMed  Google Scholar 

  4. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J 2004; 18: 1016–1018.

    Article  CAS  PubMed  Google Scholar 

  5. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  7. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457–1461.

    Article  CAS  PubMed  Google Scholar 

  8. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  CAS  PubMed  Google Scholar 

  9. Erez N, Truitt M, Olson P, Arron ST, Hanahan D . Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17: 135–147.

    Article  CAS  PubMed  Google Scholar 

  10. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A et al. ROCK and JAK1 signalling cooperate to control actomyosin contractility in tumour cells and stroma. Cancer Cell 2011; 20: 229–245.

    Article  CAS  PubMed  Google Scholar 

  11. Stuelten CH, DaCosta Byfield S, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB . Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 2005; 118 (Pt 10): 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  12. Wajant H, Henkler F, Scheurich P . The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001; 13: 389–400.

    Article  CAS  PubMed  Google Scholar 

  13. Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    Article  CAS  PubMed  Google Scholar 

  14. Heyninck K, Beyaert R . The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 1999; 442: 147–150.

    Article  CAS  PubMed  Google Scholar 

  15. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ . Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 1998; 176: 150–165.

    Article  CAS  PubMed  Google Scholar 

  16. Pritchard S, Guilak F . Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes. Arthritis Rheum 2006; 54: 2164–2174.

    Article  CAS  PubMed  Google Scholar 

  17. Ridley AJ . Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16: 522–529.

    Article  CAS  PubMed  Google Scholar 

  18. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 2009; 35: 841–855.

    Article  CAS  PubMed  Google Scholar 

  20. Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 2010; 12: 1078–1085.

    Article  CAS  PubMed  Google Scholar 

  21. Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003; 278: 23180–23186.

    Article  CAS  PubMed  Google Scholar 

  22. Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ . Isolation and characterization of two novel A20-like proteins. Biochem J 2001; 357 (Pt 3): 617–623.

    Article  CAS  PubMed  Google Scholar 

  23. Wang KZ, Wara-Aswapati N, Boch JA, Yoshida Y, Hu CD, Galson DL et al. TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and is mediated by an interaction with cytoplasmic Src. J Cell Sci 2006; 119 (Pt 8): 1579–1591.

    Article  CAS  PubMed  Google Scholar 

  24. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009; 325: 1134–1138.

    Article  CAS  PubMed  Google Scholar 

  25. Nystrom ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF . Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 2005; 205: 468–475.

    Article  CAS  PubMed  Google Scholar 

  26. Ahn KS, Sethi G, Aggarwal BB . Nuclear factor-kappa B: from clone to clinic. Curr Mol Med 2007; 7: 619–637.

    Article  CAS  PubMed  Google Scholar 

  27. Windheim M, Stafford M, Peggie M, Cohen P . Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 2008; 28: 1783–1791.

    Article  CAS  PubMed  Google Scholar 

  28. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 2009; 16: 658–666.

    Article  CAS  PubMed  Google Scholar 

  29. Enesa K, Zakkar M, Chaudhury H, Luong le A, Rawlinson L, Mason JC et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283: 7036–7045.

    Article  CAS  PubMed  Google Scholar 

  30. Bremm A, Freund SM, Komander D . Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010; 17: 939–947.

    Article  CAS  PubMed  Google Scholar 

  31. Tse WK, Eisenhaber B, Ho SH, Ng Q, Eisenhaber F, Jiang YJ . Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 2009; 10: 637.

    Article  PubMed  Google Scholar 

  32. Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E, Fogel M et al. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 2007; 67: 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  33. Szlosarek PW, Balkwill FR . Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 2003; 4: 565–573.

    Article  CAS  PubMed  Google Scholar 

  34. Scott KA, Moore RJ, Arnott CH, East N, Thompson RG, Scallon BJ et al. An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors. Mol Cancer Ther 2003; 2: 445–451.

    CAS  PubMed  Google Scholar 

  35. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 1999; 5: 828–831.

    Article  CAS  PubMed  Google Scholar 

  36. Jeong JG, Kim JM, Cho H, Hahn W, Yu SS, Kim S . Effects of IL-1beta on gene expression in human rheumatoid synovial fibroblasts. Biochem Biophys Res Commun 2004; 324: 3–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hanna AN, Berthiaume LG, Kikuchi Y, Begg D, Bourgoin S, Brindley DN . Tumor necrosis factor-alpha induces stress fiber formation through ceramide production: role of sphingosine kinase. Mol Biol Cell 2001; 12: 3618–3630.

    Article  CAS  PubMed  Google Scholar 

  38. Gronowicz G, Hadjimichael J, Richards D, Cerami A, Rossomando EF . Correlation between tumor necrosis factor-alpha (TNF-alpha)-induced cytoskeletal changes and human collagenase gene induction. J Periodontal Res 1992; 27: 562–568.

    Article  CAS  PubMed  Google Scholar 

  39. Smith PC, Guerrero J, Tobar N, Caceres M, Gonzalez MJ, Martinez J . Tumor necrosis factor-alpha-stimulated membrane type 1-matrix metalloproteinase production is modulated by epidermal growth factor receptor signaling in human gingival fibroblasts. J Periodontal Res 2009; 44: 73–80.

    Article  CAS  PubMed  Google Scholar 

  40. Elmets CA, Viner JL, Pentland AP, Cantrell W, Lin HY, Bailey H et al. Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst 2010; 102: 1835–1844.

    Article  CAS  PubMed  Google Scholar 

  41. Kurihara Y, Hatori M, Ando Y, Ito D, Toyoshima T, Tanaka M et al. Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin Exp Metastasis 2009; 26: 425–432.

    Article  CAS  PubMed  Google Scholar 

  42. Rosenblum H, Amital H . Anti-TNF therapy: safety aspects of taking the risk. Autoimmun Rev 2011; 10: 563–568.

    Article  PubMed  Google Scholar 

  43. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2011; 13: 49–58.

    Article  CAS  PubMed  Google Scholar 

  44. Hooper S, Gaggioli C, Sahai E . A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion. Br J Cancer 19; 102: 392–402.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Cancer Research UK for funding. We thank St George's Thomas Tatum Head and the Neck Unit staff involved in tissue collection, Martin Gore for providing reagents, and lab members for their advice and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Sahai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhry, S., Hooper, S., Nye, E. et al. Autocrine IL-1β-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFα signalling to carcinoma-associated fibroblasts. Oncogene 32, 747–758 (2013). https://doi.org/10.1038/onc.2012.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.91

Keywords

This article is cited by

Search

Quick links