Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice

Abstract

Overexpression of the NEDD9/HEF1/Cas-L scaffolding protein is frequent, and drives invasion and metastasis in breast, head and neck, colorectal, melanoma, lung and other types of cancer. We have examined the consequences of genetic ablation of Nedd9 in the MMTV-HER2/ERBB2/neu mouse mammary tumor model. Unexpectedly, we found that only a limited effect on metastasis in MMTV-neu;Nedd9−/− mice compared with MMTV-neu;Nedd9+/+ mice, but instead a dramatic reduction in tumor incidence (18 versus 80%), and a significantly increased latency until tumor appearance. Orthotopic reinjection and tail-vein injection of cells arising from tumors, coupled with in vivo analysis, indicated tumors arising in MMTV-neu;Nedd9−/− mice had undergone mutational selection that overcame the initial requirement for Nedd9. To better understand the defects in early tumor growth, we compared mammary progenitor cell pools from MMTV-neu;Nedd9−/− versus MMTV-neu;Nedd9+/+ mice. The MMTV-neu;Nedd9−/− genotype selectively reduced both the number and colony-forming potential of mammary luminal epithelial progenitor cells, while not affecting basal epithelial progenitors. MMTV-neu;Nedd9−/− mammospheres had striking defects in morphology and cell polarity. All of these defects were seen predominantly in the context of the HER2/neu oncogene, and were not associated with randomization of the plane of mitotic division, but rather with depressed expression the cell attachment protein FAK, accompanied by increased sensitivity to small molecule inhibitors of FAK and SRC. Surprisingly, in spite of these significant differences, only minimal changes were observed in the gene expression profile of Nedd9−/− mice, indicating critical Nedd9-dependent differences in cell growth properties were mediated via post-transcriptional regulation of cell signaling. Coupled with emerging data indicating a role for NEDD9 in progenitor cell populations during the morphogenesis of other tissues, these results indicate a functional requirement for NEDD9 in the growth of mammary cancer progenitor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pontier SM, Muller WJ . Integrins in mammary-stem-cell biology and breast-cancer progression—a role in cancer stem cells? J Cell Sci 2009; 122: 207–214.

    Article  CAS  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  Google Scholar 

  3. Sorlie T, Perou C, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 2001; 98: 10869–10874.

    Article  CAS  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  5. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  6. Moasser MM . The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26: 6469–6487.

    Article  CAS  Google Scholar 

  7. Baselga J . Treatment of HER2-overexpressing breast cancer. Ann Oncol 2010; 21 (Suppl 7): vii36–vii40.

    Article  Google Scholar 

  8. Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G, Golemis EA . Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16: 3327–3337.

    Article  CAS  Google Scholar 

  9. Minegishi M, Tachibana K, Sato T, Iwata S, Nojima Y, Morimoto C . Structure and function of Cas-L, a 105-kD Crk-associated substrate-related protein that is involved in beta 1 integrin-mediated signaling in lymphocytes. J Exp Med 1996; 184: 1365–1375.

    Article  CAS  Google Scholar 

  10. Tikhmyanova N, Little JL, Golemis EA . CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67: 1025–1048.

    Article  CAS  Google Scholar 

  11. O'Neill GM, Seo S, Serebriiskii IG, Lessin SR, Golemis EA . A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res 2007; 67: 8975–8979.

    Article  CAS  Google Scholar 

  12. Kong C, Wang C, Wang L, Ma M, Niu C, Sun X et al. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer. PLoS ONE 2011; 6: e22666.

    Article  CAS  Google Scholar 

  13. Fashena SJ, Einarson MB, O’Neill GM, Patriotis C, Golemis EA . Dissection of HEF1-dependent functions in motility and transcriptional regulation. J Cell Sci 2002; 115 (Pt 1): 99–111.

    CAS  Google Scholar 

  14. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  Google Scholar 

  15. Izumchenko E, Singh MK, Plotnikova OV, Tikhmyanova N, Little JL, Serebriiskii IG et al. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res 2009; 69: 7198–7206.

    Article  CAS  Google Scholar 

  16. Tikhmyanova N, Golemis EA . NEDD9 and BCAR1 negatively regulate E-cadherin membrane localization, and promote E-cadherin degradation. PLoS ONE 2011; 6: e22102.

    Article  CAS  Google Scholar 

  17. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510–523.

    Article  CAS  Google Scholar 

  18. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 2010; 12: R21.

    Article  Google Scholar 

  19. Nagashima T, Oyama M, Kozuka-Hata H, Yumoto N, Sakaki Y, Hatakeyama M . Phosphoproteome and transcriptome analyses of ErbB ligand-stimulated MCF-7 cells. Cancer Genomics Proteomics 2008; 5: 161–168.

    CAS  PubMed  Google Scholar 

  20. Seo S, Asai T, Saito T, Suzuki T, Morishita Y, Nakamoto T et al. Crk-associated substrate lymphocyte type is required for lymphocyte trafficking and marginal zone B cell maintenance. J Immunol 2005; 175: 3492–3501.

    Article  CAS  Google Scholar 

  21. Castello-Cros R, Khan DR, Simons J, Valianou M, Cukierman E . Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer 2009; 9: 94.

    Article  Google Scholar 

  22. Vaillant F, Asselin-Labat ML, Shackleton M, Lindeman GJ, Visvader JE . The emerging picture of the mouse mammary stem cell. Stem Cell Rev 2007; 3: 114–123.

    Article  Google Scholar 

  23. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100: 15853–15858.

    Article  CAS  Google Scholar 

  24. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    Article  CAS  Google Scholar 

  25. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  Google Scholar 

  26. Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene 2012; 31: 2614–2626.

    Article  CAS  Google Scholar 

  27. Keller PJ, Lin A, Arendt LM, Klebba I, Jones AD, Rudnick JA et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 2010; 12: R87.

    Article  Google Scholar 

  28. Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 2007; 104: 20302–20307.

    Article  CAS  Google Scholar 

  29. van Miltenburg MH, Lalai R, de Bont H, van Waaij E, Beggs H, Danen EH et al. Complete focal adhesion kinase deficiency in the mammary gland causes ductal dilation and aberrant branching morphogenesis through defects in Rho kinase-dependent cell contractility. FASEB J 2009; 23: 3482–3493.

    Article  CAS  Google Scholar 

  30. Dadke D, Jarnik M, Pugacheva EN, Singh MK, Golemis EA . Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol Biol Cell 2006; 17: 1204–1217.

    Article  CAS  Google Scholar 

  31. Pugacheva EN, Golemis EA . The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 2005; 7: 937–946.

    Article  CAS  Google Scholar 

  32. Astsaturov I, Ratushny V, Sukhanova A, Einarson MB, Bagnyukova T, Zhou Y et al. Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal 2010; 3: ra67.

    Article  Google Scholar 

  33. Singh MK, Izumchenko E, Klein-Szanto AJ, Egleston BL, Wolfson M, Golemis EA . Enhanced genetic instability and dasatinib sensitivity in mammary tumor cells lacking NEDD9. Cancer Res 2010; 70: 8907–8916.

    Article  CAS  Google Scholar 

  34. Worthington J, Bertani M, Chan H-L, Gerrits B, Timms J . Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation. BMC Cancer 2010; 10: 490.

    Article  CAS  Google Scholar 

  35. van Seventer GA, Salman HJ, Law SF, O'Neill GM, Mullen MM, Franz AA et al. Focal adhesion kinase regulates beta1 integrin dependent migration through an HEF1 effector pathway. Eur J Imm 2001; 31: 1417–1427.

    Article  CAS  Google Scholar 

  36. Law SF, Estojak J, Wang B, Mysliwiec T, Kruh GD, Golemis EA . Human Enhancer of Filamentation 1 (HEF1), a novel p130Cas-like docking protein, associates with FAK, and induces pseudohyphal growth in yeast. Mol Cell Biol 1996; 16: 3327–3337.

    Article  CAS  Google Scholar 

  37. Tikhmyanova N, Tulin AV, Roegiers F, Golemis EA . Dcas supports cell polarization and cell-cell adhesion complexes in development. PLoS One 2010; 5: e12369.

    Article  Google Scholar 

  38. Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 2009; 69: 466–474.

    Article  CAS  Google Scholar 

  39. Provenzano PP, Inman DR, Eliceiri KW, Beggs HE, Keely PJ . Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. Am J Pathol 2008; 173: 1551–1565.

    Article  CAS  Google Scholar 

  40. Pylayeva Y, Gillen KM, Gerald W, Beggs HE, Reichardt LF, Giancotti FG . Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest 2009; 119: 252–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Law SF, O’Neill GM, Fashena SJ, Einarson MB, Golemis EA . The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol Cell Biol 2000; 20: 5184–5195.

    Article  CAS  Google Scholar 

  42. O’Neill GM, Golemis EA . Proteolysis of the docking protein HEF1 and implications for focal adhesion dynamics. Mol Cell Biol 2001; 21: 5094–5108.

    Article  Google Scholar 

  43. Aquino JB, Lallemend F, Marmigere F, Adameyko II, Golemis EA, Ernfors P . The retinoic acid inducible Cas-family signaling protein Nedd9 regulates neural crest cell migration by modulating adhesion and actin dynamics. Neuroscience 2009; 162: 1106–1119.

    Article  CAS  Google Scholar 

  44. Vogel T, Ahrens S, Buttner N, Krieglstein K . Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. Cereb Cortex 2010; 20: 661–671.

    Article  Google Scholar 

  45. Tondeur S, Pangault C, Le Carrour T, Lannay Y, Benmahdi R, Cubizolle A et al. Expression map of the human exome in CD34+ cells and blood cells: increased alternative splicing in cell motility and immune response genes. PLoS ONE 2010; 5: e8990.

    Article  Google Scholar 

  46. Seo S, Nakamoto T, Takeshita M, Lu J, Sato T, Suzuki T et al. Crk-associated substrate lymphocyte type regulates myeloid cell motility and suppresses the progression of leukemia induced by p210Bcr/Abl. Cancer Sci 2011; 102: 2109–2117.

    Article  CAS  Google Scholar 

  47. Dilworth SM . Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2002; 2: 951–956.

    Article  CAS  Google Scholar 

  48. Dankort DL, Muller WJ . Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene 2000; 19: 1038–1044.

    Article  CAS  Google Scholar 

  49. Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS . neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol Cell Biol 1997; 17: 3155–3163.

    Article  CAS  Google Scholar 

  50. Astier A, Manie S, Avraham H, Hirai H, Law SF, Zhang Y-Z et al. The related adhesion focal tyrosine kinase differentially phosphorylates p130Cas and the Cas-like protein, p105HEF1. J Biol Chem 1997; 272: 19719–19730.

    Article  CAS  Google Scholar 

  51. Astier A, Manie SN, Law SF, Canty T, Hagheyeghi N, Druker BJ et al. Association of the Cas-like molecule HEF1 with CrkL following integrin and antigen receptor signaling in B cells. Possible relevance to neoplastic lymphohematopoietic cells. Leuk Lymph 1997; 28: 65–72.

    Article  CAS  Google Scholar 

  52. Manie SN, Beck ARP, Astier A, Law SF, Canty T, Hirai H et al. Involvement of p130Cas and p105HEF1, a novel Cas-like docking protein, in a cytoskeleton-dependent signaling pathway initiated by ligation of integrin or antigen receptor on human B cells. J Biol Chem 1997; 272: 4230–4236.

    Article  CAS  Google Scholar 

  53. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 1998; 77: 640–644.

    Article  CAS  Google Scholar 

  54. Shults J, Ratcliffe SJ, Leonard M . Improved generalized estimating equastion analysis via xtqls for quasi-least squares in STATA. STATA J 2007; 7: 147–166.

    Article  Google Scholar 

  55. Stingl J, Emerman JT, Eaves CJ . Enzymatic dissociation and culture of normal human mammary tissue to detect progenitor activity. Methods Mol Biol 2005; 290: 249–263.

    PubMed  Google Scholar 

  56. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  Google Scholar 

  57. Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 2010; 20: 1809–1818.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Emmanuelle Nicolas (Genotyping and Real-Time-PCR Facility of FCCC), Jianming Pei (Cytogenetics and Chromosome Microarray Analysis Facility of FCCC) and Yue-Sheng Liu (Expression Microarray Facility of FCCC), Anthony Lerro and Jackie Valvardi (Laboratory Animal Facility of FCCC), James Oesterling (Cell Sorting Facility of FCCC), Jin Fang (Cell Culture Facility of FCCC), Catherine Renner (Histopathology Facility), Marina Boushra (from Cornell University), Christiaan Honig (from Germantown Academy) and Nicolas G Day (from St John’s College) for technical help. We particularly acknowledge Edna Cukierman for expert advice with analysis of microscopic images. R01s CA63366 and CA113342, a U54 CA149147 subcontract, and Pennsylvania Tobacco Settlement funding (to EAG); and NIH core Grant CA06927 and the Pew Charitable Fund (to Fox Chase Cancer Center) supported this work. JLL was supported by NIH T32 CA009035 and F32 CA150553; EI by the American Associates, Ben-Gurion University of the Negev; EP by the Fox Chase Cancer Center Undergraduate Student Summer Fellowship Program. MFO was supported by R21 LM009382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Golemis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, J., Serzhanova, V., Izumchenko, E. et al. A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice. Oncogene 33, 411–420 (2014). https://doi.org/10.1038/onc.2012.607

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.607

Keywords

This article is cited by

Search

Quick links