Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells

Abstract

Fanconi Anemia (FA) is a rare genetic disorder associated with a bone-marrow failure, cancer predisposition and hypersensitivity to DNA crosslinking agents. Majority of the 15 FA genes and encoded proteins characterized so far are integrated into DNA repair pathways, however, other important functions cannot be excluded. FA cells are sensitive to oxidants, and accumulation of oxidized proteins has been characterized for several FA subgroups. Clinical phenotypes of both FA and other closely related diseases suggest altered functions of mitochondria, organelles responsible for cellular energetic metabolism, and also serving as an important producer and the most susceptible target from reactive oxidative species (ROS). In this study, we have shown that elevated level of mitochondrial ROS in FA cells is in parallel with the decrease of mitochondrial membrane potential, the decrease of ATP production, impaired oxygen uptake and pathological changes in the morphology of mitochondria. This is accompanied by inactivation of enzymes that are essential for the energy production (F1F0ATPase and cytochrome C oxidase) and detoxification of ROS (superoxide dismutase, SOD1). In turn, overexpression of SOD1 could rescue oxygen consumption rate in FA-deficient cells. Importantly, the depletion of mitochondria improved survival rate of mitomycin C treated FA cells suggesting that hypersensitivity of FA cells to chemotherapeutic drugs could be in part due to the mitochondria-mediated oxidative stress. On the basis of our results, we propose that deficiency in FA genes lead to disabling mitochondrial ROS-scavenging machinery further affecting mitochondrial functions and suppressing cell respiration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Moldovan GL, D'Andrea AD . FANCD2 hurdles the DNA interstrand crosslink. Cell 2009; 139: 1222–1224.

    Article  Google Scholar 

  2. Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A . Mutations of the SLX4 gene in Fanconi Anemia. Nat Genet 2011; 43: 142–146.

    Article  CAS  Google Scholar 

  3. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al. Mutation of the RAD51C gene in a Fanconi Anemia-like disorder. Nat Genet 2010; 42: 406–409.

    Article  CAS  Google Scholar 

  4. Vandenberg CJ, Gergely F, Ong CY, Pace P, Mallery DL, Hiom K et al. BRCA1-independent ubiquitination of FANCD2. Mol Cell 2003; 12: 247–254.

    Article  CAS  Google Scholar 

  5. Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt HJ et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 2003; 35: 165–170.

    Article  CAS  Google Scholar 

  6. Kennedy RD, D'Andrea AD . The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 2005; 19: 2925–2940.

    Article  CAS  Google Scholar 

  7. Deans AJ, West SC . DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011; 11: 467–480.

    Article  CAS  Google Scholar 

  8. Ruppitsch W, Meisslitzer C, Weirich-Schwaiger H, Klocker H, Scheidereit C, Schweiger M et al. The role of oxygen metabolism for the pathological phenotype of Fanconi Anemia. Hum Genet 1997; 99: 710–719.

    Article  CAS  Google Scholar 

  9. Degan P, Bonassi S, De Caterina M, Korkina LG, Pinto L, Scopacasa F et al. In vivo accumulation of 8-hydroxy-2'-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis 1995; 16: 735–741.

    Article  CAS  Google Scholar 

  10. Bogliolo M, Borghini S, Abbondandolo A, Degan P . Alternative metabolic pathways for energy supply and resistance to apoptosis in Fanconi Anaemia. Mutagenesis 2002; 17: 25–30.

    Article  CAS  Google Scholar 

  11. Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS . Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem 2004; 279: 16805–16812.

    Article  CAS  Google Scholar 

  12. Rani R, Li J, Pang Q . Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice. Cancer Res 2008; 68: 9693–9702.

    Article  CAS  Google Scholar 

  13. Lyakhovich A, Surralles J . Constitutive activation of caspase-3 and poly ADP ribose polymerase cleavage in fanconi anemia cells. Mol Cancer Res 2010; 8: 46–56.

    Article  CAS  Google Scholar 

  14. Takeuchi T, Morimoto K . Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. Carcinogenesis 1993; 14: 1115–1120.

    Article  CAS  Google Scholar 

  15. Pagano G, Degan P, d'Ischia M, Kelly FJ, Pallardo FV, Zatterale A et al. Gender- and age-related distinctions for the in vivo prooxidant state in Fanconi Anaemia patients. Carcinogenesis 2004; 25: 1899–1909.

    Article  CAS  Google Scholar 

  16. Petrovic S, Leskovac A, Kotur-Stevuljevic J, Joksic J, Guc-Scekic M, Vujic D et al. Gender-related differences in the oxidant state of cells in Fanconi Anemia heterozygotes. Biol Chem 2011; 392: 625–632.

    Article  CAS  Google Scholar 

  17. Du W, Rani R, Sipple J, Schick J, Myers KC, Mehta P et al. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. Blood 2012; 119: 4142–4151.

    Article  CAS  Google Scholar 

  18. Pagano G, Aiello Talamanca A, Castello G, Pallardo FV, Zatterale A, Degan P . Oxidative stress in Fanconi anaemia: from cells and molecules toward prospects in clinical management. Biol Chem 2012; 393: 11–21.

    Article  CAS  Google Scholar 

  19. Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE . Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi Anemia. J Cell Biol 2006; 175: 225–235.

    Article  CAS  Google Scholar 

  20. Pallardo FV, Lloret A, Lebel M, d'Ischia M, Cogger VC, Le Couteur DG et al. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 2010; 11: 401–419.

    Article  CAS  Google Scholar 

  21. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N . Importing mitochondrial proteins: machineries and mechanisms. Cell 2009; 138: 628–644.

    Article  CAS  Google Scholar 

  22. Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 2007; 6: 245–256.

    Article  Google Scholar 

  23. Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL . Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 2007; 148: 293–299.

    Article  CAS  Google Scholar 

  24. O'Neill HC, Orlicky DJ, Hendry-Hofer TB, Loader JE, Day BJ, White CW . Role of reactive oxygen and nitrogen species in olfactory epithelial injury by the sulfur mustard analogue 2-chloroethyl ethyl sulfide. Am J Respir Cell Mol Biol 2011; 45: 323–331.

    Article  CAS  Google Scholar 

  25. Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D . Neuroglobin protects PC12 cells against oxidative stress. Brain Res 2008; 1190: 159–166.

    Article  CAS  Google Scholar 

  26. Yu T, Robotham JL, Yoon Y . Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006; 103: 2653–2658.

    Article  CAS  Google Scholar 

  27. Rousset S, Nocentini S, Revet B, Moustacchi E . Molecular analysis by electron microscopy of the removal of psoralen-photoinduced DNA cross-links in normal and Fanconi's Anemia fibroblasts. Cancer Res 1990; 50: 2443–2448.

    CAS  PubMed  Google Scholar 

  28. Rousset S, Nocentini S, Rouillard D, Baroche C, Moustacchi E . Mitochondrial alterations in Fanconi Anemia fibroblasts following ultraviolet A or psoralen photoactivation. Photochem Photobiol 2002; 75: 159–166.

    Article  CAS  Google Scholar 

  29. Hadjur S, Ung K, Wadsworth L, Dimmick J, Rajcan-Separovic E, Scott RW et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood 2001; 98: 1003–1011.

    Article  CAS  Google Scholar 

  30. Cuccarolo P, Barbieri F, Sancandi M, Viaggi S, Degan P . Differential behaviour of normal, transformed and Fanconi's Anemia lymphoblastoid cells to modeled microgravity. J Biomed Sci 2010; 17: 63.

    Article  Google Scholar 

  31. Ponte F, Carvalho F, Porto B . Protective effect of acetyl-l-carnitine and alpha-lipoic acid against the acute toxicity of diepoxybutane to human lymphocytes. Toxicology 2011; 289: 52–58.

    Article  CAS  Google Scholar 

  32. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C . Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 2011; 18: 282–292.

    Article  CAS  Google Scholar 

  33. Richter C, Kass GE . Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation. Chem Biol Interact 1991; 77: 1–23.

    Article  CAS  Google Scholar 

  34. Dirmeier R, O'Brien KM, Engle M, Dodd A, Spears E, Poyton RO . Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 2002; 277: 34773–34784.

    Article  CAS  Google Scholar 

  35. Uchida K . 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003; 42: 318–343.

    Article  CAS  Google Scholar 

  36. Talbot DA, Lambert AJ, Brand MD . Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett 2004; 556: 111–115.

    Article  CAS  Google Scholar 

  37. Nordenson I . Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's Anemia. Hereditas 1977; 86: 147–150.

    Article  CAS  Google Scholar 

  38. Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB . Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 1981; 290: 142–143.

    Article  CAS  Google Scholar 

  39. Dallapiccola B, Porfirio B, Mokini V, Alimena G, Isacchi G, Gandini E . Effect of oxidants and antioxidants on chromosomal breakage in Fanconi Anemia lymphocytes. Hum Genet 1985; 69: 62–65.

    Article  CAS  Google Scholar 

  40. Schindler D, Hoehn H . Fanconi Anemia mutation causes cellular susceptibility to ambient oxygen. Am J Hum Genet 1988; 43: 429–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pagano G, Korkina LG, Degan P, Del Principe D, Lindau-Shepard B, Zatterale A et al. In vitro hypersensitivity to oxygen of Fanconi Anemia (FA) cells is linked to ex vivo evidence for oxidative stress in FA homozygotes and heterozygotes. Blood 1997; 89: 1111–1112.

    CAS  PubMed  Google Scholar 

  42. Fridlyand LE, Philipson LH . Oxidative reactive species in cell injury: mechanisms in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci 2005; 1066: 136–151.

    Article  CAS  Google Scholar 

  43. Droge W . Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95.

    Article  CAS  Google Scholar 

  44. Wu Y, Sommers JA, Suhasini AN, Leonard T, Deakyne JS, Mazin AV et al. Fanconi Anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood 2010; 116: 3780–3791.

    Article  CAS  Google Scholar 

  45. Xue Y, Li Y, Guo R, Ling C, Wang W . FANCM of the Fanconi Anemia core complex is required for both monoubiquitination and DNA repair. Hum Mol Genet 2008; 17: 1641–1652.

    Article  CAS  Google Scholar 

  46. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK . Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 2008; 68: 1777–1785.

    Article  CAS  Google Scholar 

  47. Bogliolo M, Lyakhovich A, Callen E, Castella M, Cappelli E, Ramirez MJ et al. Histone H2AX and Fanconi Anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J 2007; 26: 1340–1351.

    Article  CAS  Google Scholar 

  48. Frezza C, Cipolat S, Scorrano L . Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2007; 2: 287–295.

    Article  CAS  Google Scholar 

  49. Ali SS, Marcondes MC, Bajova H, Dugan LL, Conti B . Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J Biol Chem 2010; 285: 32522–32528.

    Article  CAS  Google Scholar 

  50. Cossarizza A, Salvioli S . Flow cytometric analysis of mitochondrial membrane potential using JC-1. Curr Protoc Cytom 2001, Chapter 9:Unit 9 14, doi:10.1002/0471142956.cy0914s13.

  51. Allan AC, Fluhr R . Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 1997; 9: 1559.

    Article  CAS  Google Scholar 

  52. Amano F, Noda T . Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent. FEBS Lett 1995; 368: 425–428.

    Article  CAS  Google Scholar 

  53. Miller SW, Trimmer PA, Parker WD, Davis RE . Creation and characterization of mitochondrial DNA-depleted cell lines with ‘neuronal-like’ properties. J Neurochem 1996; 67: 1897–1907.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Itahana and Li Ying (Duke-NUS) for technical help with OCR and Seahorse experiments. We also acknowledge Dr Alex Panov for helpful comments related to mitochondria isolation and Dr Casey’s lab, Duke-NUS sorting core facility for technical help and sharing materials as well as Dr Surralles’lab for providing FA cell lines. We are indebted to Drs Giovani Pagano and Massimo Bogliolo for helpful critics upon writing this manuscript.

Authors contribution: UK performed majority of experiments (except EM), WYJ and BHB performed EM experiments and analyzed the data, AL designed and performed the experiments, analyzed and interpreted the data, drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lyakhovich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, U., Ya Jun, W., Huat Bay, B. et al. Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells. Oncogene 33, 165–172 (2014). https://doi.org/10.1038/onc.2012.583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.583

Keywords

This article is cited by

Search

Quick links