Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BRCA1 targets G2/M cell cycle proteins for ubiquitination and proteasomal degradation

Abstract

The BRCA1 tumor suppressor protein heterodimerizes with its partner protein, BARD1, via the RING domain present in both proteins. The heterodimer contains an E3 ubiquitin ligase activity and participates in multiple cellular functions such as cell cycle control, DNA repair and regulation of gene transcription, collectively aimed at maintaining genomic stability and tumor suppression. Yet, the precise role of BRCA1 E3 ligase in these cellular functions is poorly understood. We present data showing that BRCA1 ubiquitinates G2/M cell cycle proteins, cyclin B and Cdc25C, leading to their accelerated degradation via a mechanism that is independent of APC/C. BRCA1-dependent degradation of cyclin B and Cdc25C is reversed by proteasome inhibitors and is enhanced following DNA damage, which may represent a possible mechanism to prevent cyclin B and Cdc25C accumulation, a requirement for mitotic entry. Our data provide mechanistic insight into how BRCA1 E3 ligase activity regulates the G2/M cell cycle checkpoint and, thus, contributes to maintenance of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yarden RI, Papa MZ . BRCA1 at the crossroad of multiple cellular pathways: approaches for therapeutic interventions. Mol Cancer Ther 2006; 5: 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  2. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM . RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96: 11364–11369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mallery DL, Vandenberg CJ, Hiom K . Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. Embo J 2002; 21: 6755–6762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia Y, Pao GM, Chen HW, Verma IM, Hunter T . Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 2003; 278: 5255–5263.

    Article  CAS  PubMed  Google Scholar 

  5. Yu X, Chini CC, He M, Mer G, Chen J . The BRCT domain is a phospho-protein binding domain. Science 2003; 302: 639–642.

    Article  CAS  PubMed  Google Scholar 

  6. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM . Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA 2001; 98: 5134–5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohta T, Sato K, Wu W . The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Lett 2011; 585: 2836–2844.

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Huang J, Chen J . CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol 2007; 14: 710–715.

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 2007; 316: 1194–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007; 316: 1198–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004; 24: 8457–8466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eakin CM, Maccoss MJ, Finney GL, Klevit RE . Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 2007; 104: 5794–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011; 477: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu-Baer F, Lagrazon K, Yuan W, Baer R . The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 2003; 278: 34743–34746.

    Article  CAS  PubMed  Google Scholar 

  15. Yu X, Fu S, Lai M, Baer R, Chen J . BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 2006; 20: 1721–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2004; 279: 30919–30922.

    Article  CAS  PubMed  Google Scholar 

  17. Wu W, Nishikawa H, Hayami R, Sato K, Honda A, Aratani S et al. BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res 2007; 67: 951–958.

    Article  CAS  PubMed  Google Scholar 

  18. Starita LM, Horwitz AA, Keogh MC, Ishioka C, Parvin JD, Chiba N . BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 2005; 280: 24498–24505.

    Article  CAS  PubMed  Google Scholar 

  19. Horwitz AA, Affar el B, Heine GF, Shi Y, Parvin JD . A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase. Proc Natl Acad Sci USA 2007; 104: 6614–6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY . Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 2006; 314: 1467–1470.

    Article  CAS  PubMed  Google Scholar 

  21. Calvo V, Beato M . BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters. Cancer Res 2011; 71: 3422–3431.

    Article  CAS  PubMed  Google Scholar 

  22. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC . BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002; 30: 285–289.

    Article  PubMed  Google Scholar 

  23. Yarden RI, Metsuyanim S, Pickholtz I, Shabbeer S, Tellio H, Papa MZ . BRCA1-dependent Chk1 phosphorylation triggers partial chromatin disassociation of phosphorylated Chk1 and facilitates S-phase cell cycle arrest. Int J Biochem Cell Biol 2012; 44: 1761–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hershko A . Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1571–1575 (discussion 5–6).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Acquaviva C, Pines J . The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci 2006; 119 (Part 12): 2401–2404.

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Zhang Z, Bower J, Lu Y, Leonard SS, Ding M et al. Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 2002; 99: 1990–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfleger CM, Kirschner MW . The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 2000; 14: 655–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005; 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  29. Aprelikova OPA, Fang B, Koller BH, Liu ET . BRCA1 is a selective co-activator of 14-3-3 sigma gene transcription in mouse embryonic stem cells. J Biol Chem 2001; 276: 25647–25650.

    Article  CAS  PubMed  Google Scholar 

  30. Au WW, Henderson BR . The BRCA1 RING and BRCT domains cooperate in targeting BRCA1 to ionizing radiation-induced nuclear foci. J Biol Chem 2005; 280: 6993–7001.

    Article  CAS  PubMed  Google Scholar 

  31. Yu X, Chen J . DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 2004; 24: 9478–9486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu B, O'Donnell AH, Kim ST, Kastan MB . Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002; 62: 4588–4591.

    CAS  PubMed  Google Scholar 

  33. Wu-Baer F, Ludwig T, Baer R . The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function. Mol Cell Biol 2011; 30: 2787–2798.

    Article  Google Scholar 

  34. Christensen DE, Brzovic PS, Klevit RE . E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 2007; 14: 941–948.

    Article  CAS  PubMed  Google Scholar 

  35. Brandeis M, Hunt T . The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. Embo J 1996; 15: 5280–5289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Homer HA, McDougall A, Levasseur M, Murdoch AP, Herbert M . Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction 2005; 130: 829–843.

    Article  CAS  PubMed  Google Scholar 

  37. Wang RH, Yu H, Deng CX . A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci USA 2004; 101: 17108–17113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446: 876–881.

    Article  CAS  PubMed  Google Scholar 

  39. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 1999; 96: 2147–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin P, Hardy S, Morgan DO . Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J Cell Biol 1998; 141: 875–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E . Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. Embo J 1998; 17: 2728–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato K, Sundaramoorthy E, Rajendra E, Hattori H, Jeyasekharan AD, Ayoub N et al. A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr Biol 2012; 22: 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  43. Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 2005; 90: 5–14.

    Article  CAS  PubMed  Google Scholar 

  44. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009; 462: 886–890.

    Article  CAS  PubMed  Google Scholar 

  45. Reid LJ, Shakya R, Modi AP, Lokshin M, Cheng JT, Jasin M et al. E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc Natl Acad Sci USA 2008; 105: 20876–20881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin CS et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011; 334: 525–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodie SG, Deng CX . BRCA1-associated tumorigenesis: what have we learned from knockout mice? Trends Genet 2001; 17: S18–S22.

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001; 28: 266–271.

    Article  CAS  PubMed  Google Scholar 

  49. Wu W, Koike A, Takeshita T, Ohta T . The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div 2008; 3: 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol Endocrinol 2010; 24: 76–90.

    Article  CAS  PubMed  Google Scholar 

  51. Lim KL, Chew KC, Tan JM, Wang C, Chung KK, Zhang Y et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 2005; 25: 2002–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 2006; 8: 700–710.

    Article  CAS  PubMed  Google Scholar 

  53. Yarden RI, Brody LC . BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA 1999; 96: 4983–4988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs B Henderson, J Pines, R Agami, E Rosen and M Brandeis for providing plasmids and Dr L Brody for reagents. We thank the microscopy unit in Bar-Ilan University for assistance with immunofluorescence studies and Dr I Goldstein and the flow cytometry unit at the Sheba medical center for assistance with fluorescence-activated cell sorting analysis. We thank Allison Hall for technical assistance. We thank Drs Eliot Rosen, Claire Pollack, Michael Brandeis and Gad Lavie for stimulating discussions and critical reading of the manuscript. This study was supported by a Research Career Development Award from the Israel Cancer Research Fund (to RIY) and by the funding from the Health Ministry (to RIY and MZP), the Israeli Cancer Association (RIY) and funds from Georgetown University, SNHS to RIY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R I Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabbeer, S., Omer, D., Berneman, D. et al. BRCA1 targets G2/M cell cycle proteins for ubiquitination and proteasomal degradation. Oncogene 32, 5005–5016 (2013). https://doi.org/10.1038/onc.2012.522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.522

Keywords

This article is cited by

Search

Quick links