Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumour-suppressor genes drive induced senescence bypass in normal diploid mammalian cells

Abstract

Immortalization (senescence bypass) is a critical rate-limiting step in the malignant transformation of mammalian somatic cells. Human cells must breach at least two distinct senescence barriers to permit unfettered clonal evolution during cancer development: (1) stress- or oncogene-induced premature senescence (SIPS/OIS), mediated via the p16–Rb and/or ARF–p53–p21 tumour-suppressive pathways, and (2) replicative senescence triggered by telomere shortening. In contrast, because their telomerase is constitutively active, cells from small rodents possess only the SIPS/OIS barrier, and are therefore useful for studying SIPS/OIS bypass in isolation. Dermal fibroblasts from the Syrian hamster (SHD cells) are exceptionally resistant to spontaneous SIPS bypass, but it can be readily induced following exposure to a wide range of chemical and physical carcinogens. Here we show that a spectrum of carcinogen-specific mutational and epigenetic alterations involving the INK4A (p16), p53 and INK4B (p15) genes are associated with induced SIPS bypass. With ionizing radiation, immortalization is invariably accompanied by efficient biallelic deletion of the complete INK4/CDKN2 locus. In comparison, SHD cells immortalized by the powerful polycyclic hydrocarbon carcinogen benzo(a)pyrene display transversion point mutations in the DNA-binding domain of p53 coupled with INK4 alterations such as loss of expression of p15. Epimutational silencing of p16 is the primary event associated with immortalization by nickel, a human non-genotoxic carcinogen. As SIPS/OIS bypass is a prerequisite for the immortalization of normal diploid human epithelial cells, our results with the SHD model will provide a basis for delineating combinations of key molecular changes underpinning this important event in human carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Newbold RF . Cellular immortalization and telomerase activation in cancer. In: Knowles M, Selby P (eds) Introduction to the Cellular and Molecular Biology of Cancer 4th edn. Oxford University Press: Oxford 2005. pp 170–185.

    Google Scholar 

  2. Sikora E, Arendt T, Bennett M, Narita M . Impact of cellular senescence signature on ageing research. Ageing Res Rev 2011; 10: 146–152.

    Article  CAS  PubMed  Google Scholar 

  3. Russo I, Silver A, Cuthbert A, Griffin D, Trott D, Newbold R . A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization. Oncogene 1998; 17: 3417–3426.

    Article  CAS  PubMed  Google Scholar 

  4. Seluanov A, Hine C, Bozzella M, Hall A, Sasahara TH, Ribeiro AA et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 2008; 7: 813–823.

    Article  CAS  PubMed  Google Scholar 

  5. Campisi J . Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 2001; 11: S27–S31.

    Article  CAS  PubMed  Google Scholar 

  6. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  7. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trott D, Cuthbert A, Overell R, Russo I, Newbold R . Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens. Carcinogenesis 1995; 16: 193–204.

    Article  CAS  PubMed  Google Scholar 

  9. Newbold R, Overell R, Connell J . Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 1982; 299: 633–635.

    Article  CAS  PubMed  Google Scholar 

  10. Newbold R, Overell R . Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 1983; 304: 648–651.

    Article  CAS  PubMed  Google Scholar 

  11. Creton S, Aardema MJ, Carmichael PL, Harvey JS, Martin FL, Newbold RF et al. Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs. Mutagenesis 2011; 27: 93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Newbold RF, Wigley CB, Thompson MH, Brookes P . Cell-mediated mutagenesis in cultured Chinese hamster cells by carcinogenic polycyclic hydrocarbons: nature and extent of the associated hydrocarbon-DNA reaction. Mutat Res 1977; 43: 101–116.

    Article  CAS  PubMed  Google Scholar 

  13. Newbold R, Brookes P . Exceptional mutagenicity of a benzo(a)pyrene diol epoxide in cultured mammalian cells. Nature 1976; 261: 52–54.

    Article  CAS  PubMed  Google Scholar 

  14. Newbold R, Warren W, Medcalf A, Amos J . Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification. Nature 1980; 283: 596–599.

    Article  CAS  PubMed  Google Scholar 

  15. Arita A, Costa M . Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 2009; 1: 222–228.

    Article  CAS  PubMed  Google Scholar 

  16. Ruas M, Peters G . The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378: F115–F177.

    CAS  PubMed  Google Scholar 

  17. Csepregi A, Ebert MP, Röcken C, Schneider-Stock R, Hoffmann J, Schulz HU et al. Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC Cancer 2010; 10: 317.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goh AM, Coffill CR, Lane DP . The role of mutant p53 in human cancer. J Pathol 2011; 223: 116–126.

    Article  CAS  PubMed  Google Scholar 

  19. Whibley C, Odell A, Nedelko T, Balaburski G, Murphy M, Liu Z et al. Wild-type and Hupki (human p53 knock-in) murine embryonic fibroblasts: p53/ARF pathway disruption in spontaneous escape from senescence. J Biol Chem 2010; 285: 11326–11335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Odell A, Askham J, Whibley C, Hollstein M . How to become immortal: let MEFs count the ways. Aging (Albany NY) 2010; 2: 160–165.

    Article  CAS  Google Scholar 

  21. Chang K, Laconi S, Mangold K, Hubchak S, Scarpelli D . Multiple genetic alterations in hamster pancreatic ductal adenocarcinomas. Cancer Res 1995; 55: 2560–2568.

    CAS  PubMed  Google Scholar 

  22. Chang K, Mangold K, Hubchak S, Laconi S, Scarpelli D . Genomic p53 mutation in a chemically induced hamster pancreatic ductal adenocarcinoma. Cancer Res 1994; 54: 3878–3883.

    CAS  PubMed  Google Scholar 

  23. Chang K, Lin S, Koos S, Pather K, Solt D . p53 and Ha-ras mutations in chemically induced hamster buccal pouch carcinomas. Carcinogenesis 1996; 17: 595–600.

    Article  CAS  PubMed  Google Scholar 

  24. Chang K, Sarraj S, Lin S, Tsai P, Solt D . P53 expression, p53 and Ha-ras mutation and telomerase activation during nitrosamine-mediated hamster pouch carcinogenesis. Carcinogenesis 2000; 21: 1441–1451.

    CAS  PubMed  Google Scholar 

  25. Gimenez-Conti I, LaBate M, Liu F, Osterndorff E . p53 alterations in chemically induced hamster cheek-pouch lesions. Mol Carcinog 1996; 16: 197–202.

    Article  CAS  PubMed  Google Scholar 

  26. Oreffo V, Lin H, Padmanabhan R, Witschi H . K-ras and p53 point mutations in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced hamster lung tumors. Carcinogenesis 1993; 14: 451–455.

    Article  CAS  PubMed  Google Scholar 

  27. Legros Y, McIntyre P, Soussi T . The cDNA cloning and immunological characterization of hamster p53. Gene 1992; 112: 247–250.

    Article  CAS  PubMed  Google Scholar 

  28. Popescu N, Zimonjic D, Albor A, Notario V . Localization of the Tp53 gene on Syrian hamster chromosome 9 by fluorescence in situ hybridization. Cytogenet Cell Genet 1995; 68: 71–73.

    Article  CAS  PubMed  Google Scholar 

  29. Ling H, Sayer JM, Plosky BS, Yagi H, Boudsocq F, Woodgate R et al. Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc Natl Acad Sci USA 2004; 101: 2265–2269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Weghorst C, Tsutsumi M, Poi M, Knobloch T, Casto B et al. Frequent p16INK4A/CDKN2A alterations in chemically induced Syrian golden hamster pancreatic tumors. Carcinogenesis 2004; 25: 263–268.

    Article  PubMed  Google Scholar 

  31. Li J, Warner B, Casto B, Knobloch T, Weghorst C . Tumor suppressor p16(INK4A)/Cdkn2a alterations in 7, 12-dimethylbenz(a)anthracene (DMBA)-induced hamster cheek pouch tumors. Mol Carcinog 2008; 47: 733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muscarella P, Knobloch T, Ulrich A, Casto B, Moniaux N, Wittel U et al. Identification and sequencing of the Syrian Golden hamster (Mesocricetus auratus) p16(INK4a) and p15(INK4b) cDNAs and their homozygous gene deletion in cheek pouch and pancreatic tumor cells. Gene 2001; 278: 235–243.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Qin D, Knobloch T, Tsai M, Weghorst C, Melvin W et al. Expression and characterization of Syrian golden hamster p16, a homologue of human tumor suppressor p16 INK4A. Biochem Biophys Res Commun 2003; 304: 241–247.

    Article  CAS  PubMed  Google Scholar 

  34. Hanaoka M, Shimizu K, Shigemura M, Kato A, Fujii H, Honoki K et al. Cloning of the hamster p16 gene 5′ upstream region and its aberrant methylation patterns in pancreatic cancer. Biochem Biophys Res Commun 2005; 333: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  35. Haga K, Ohno S, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M et al. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 2007; 98: 147–154.

    Article  CAS  PubMed  Google Scholar 

  36. Yaswen P, Stampfer MR . Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int J Biochem Cell Biol 2002; 34: 1382–1394.

    Article  CAS  PubMed  Google Scholar 

  37. Sherr CJ, DePinho RA . Cellular senescence: mitotic clock or culture shock? Cell 2000; 102: 407–410.

    Article  CAS  PubMed  Google Scholar 

  38. Camacho CV, Mukherjee B, McEllin B, Ding LH, Hu B, Habib AA et al. Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks. Carcinogenesis 2010; 31: 1889–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Florl AR, Schulz WA . Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells. Genes Chromosomes Cancer 2003; 37: 141–148.

    Article  CAS  PubMed  Google Scholar 

  40. Grafström E, Egyházi S, Ringborg U, Hansson J, Platz A . Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res 2005; 11: 2991–2997.

    Article  PubMed  Google Scholar 

  41. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. Signatures of mutation and selection in the cancer genome. Nature 2010; 463: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raschke S, Balz V, Efferth T, Schulz WA, Florl AR . Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines. Genes Chromosomes Cancer 2005; 42: 58–67.

    Article  CAS  PubMed  Google Scholar 

  43. Windhofer F, Krause S, Hader C, Schulz WA, Florl AR . Distinctive differences in DNA double-strand break repair between normal urothelial and urothelial carcinoma cells. Mutat Res 2008; 638: 56–65.

    Article  CAS  PubMed  Google Scholar 

  44. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS et al. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 2009; 69: 7557–7568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Z, Muehlbauer KR, Schmeiser HH, Hergenhahn M, Belharazem D, Hollstein MC . p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors. Cancer Res 2005; 65: 2583–2587.

    Article  CAS  PubMed  Google Scholar 

  46. Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007; 448: 943–946.

    Article  CAS  PubMed  Google Scholar 

  47. Peters G . An INKlination for epigenetic control of senescence. Nat Struct Mol Biol 2008; 15: 1133–1134.

    Article  CAS  PubMed  Google Scholar 

  48. He J, Kallin EM, Tsukada Y, Zhang Y . The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 2008; 15: 1169–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam T, Ruczinski I, Helzlsouer K, Shugart Y, Li K, Clipp S et al. Copy number variants of GSTM1 and GSTT1 in relation to lung cancer risk in a prospective cohort study. Ann Epidemiol 2009; 19: 546–552.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was fully funded by triennial Project Grant to RFN and MO’D (ID G0800697/1) from the (UK) National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). JCP is funded by a UK BBSRC-CASE Studentship award with Unilever Plc. EG was funded by a grant from AstraZeneca. We acknowledge Mrs Alison Marriott and Dr Rana Hasan for their expert technical assistance. We dedicate this article to colleagues Professor Philip D Lawley (1927–2011) who pioneered research into the reaction of alkylating carcinogens with DNA; and to Steven Pash (1955–2011) who assisted expertly with the generation of hamster cell cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Newbold.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasaei, H., Gilham, E., Pickles, J. et al. Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumour-suppressor genes drive induced senescence bypass in normal diploid mammalian cells. Oncogene 32, 171–179 (2013). https://doi.org/10.1038/onc.2012.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.45

Keywords

This article is cited by

Search

Quick links