Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α3β1 integrins regulate CD151 complex assembly and membrane dynamics in carcinoma cells within 3D environments

Abstract

Integrins are extracellular matrix (ECM) receptors that are key players in the regulation of tumour cell invasion. The laminin-binding integrin α3β1 has previously been shown to regulate adhesion and migration of carcinoma cells in part through co-operative signalling with the tetraspanin family of transmembrane proteins. However, the spatial and temporal regulation of crosstalk between these families of transmembrane proteins in intact cells remains poorly understood. Here we have used fluorescence resonance energy transfer (FRET) to demonstrate for the first time that α3β1 and the tetraspanin CD151 directly associate at the front and retracting rear of polarised migrating breast carcinoma cells in both two-dimentional (2D) and three-dimentional (3D)matrices. Furthermore, localised α3β1–CD151 binding correlates with lower CD151 homodimerisation in cells migrating on laminin or within matrigel. Loss of α3β1 integrin leads to increased CD151 homodimer formation, increased activation of Rho GTPase, loss of cell polarity and decreased invasion in 3D ECM. As a result, α3-silenced cells show decreased actin-based membrane protrusion and retraction in both 2D and 3D environments. These data demonstrate that associations between α3β1 and CD151 occur dynamically within discrete subcellular compartments and act to establish local GTPase signalling to promote tumour cell invasion. These novel findings shed light on the complex crosstalk and switching between receptor complexes in response to different extracellular cues during cell invasion in 3D environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  Google Scholar 

  2. Turner FE, Broad S, Khanim FL, Jeanes A, Talma S, Hughes S et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J Biol Chem 2006; 281: 21321–21331.

    Article  CAS  Google Scholar 

  3. Nguyen BP, Gil SG, Carter WG . Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J Biol Chem 2000; 275: 31896–31907.

    Article  CAS  Google Scholar 

  4. Stipp CS . Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 2010; 12: e3.

    Article  Google Scholar 

  5. Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V, Rudling R et al. Alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 2008; 118: 965–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 2000; 87: 336–342.

    Article  CAS  Google Scholar 

  7. Fukushima Y, Ohnishi T, Arita N, Hayakawa T, Sekiguchi K . Integrin alpha3beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int J Cancer 1998; 76: 63–72.

    Article  CAS  Google Scholar 

  8. Melchiori A, Mortarini R, Carlone S, Marchisio PC, Anichini A, Noonan DM et al. The alpha 3 beta 1 integrin is involved in melanoma cell migration and invasion. Exp Cell Res 1995; 219: 233–242.

    Article  CAS  Google Scholar 

  9. Okada T, Okuno H, Mitsui Y . A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and alpha 3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis 1994; 12: 305–314.

    Article  CAS  Google Scholar 

  10. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F . Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 2009; 19: 434–446.

    Article  CAS  Google Scholar 

  11. Claas C, Stipp CS, Hemler ME . Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem 2001; 276: 7974–7984.

    Article  CAS  Google Scholar 

  12. Hemler ME . Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 2005; 6: 801–811.

    Article  CAS  Google Scholar 

  13. Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME . Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 1998; 9: 2751–2765.

    Article  CAS  Google Scholar 

  14. Stipp CS, Kolesnikova TV, Hemler ME . Functional domains in tetraspanin proteins. Trends Biochem Sci 2003; 28: 106–112.

    Article  CAS  Google Scholar 

  15. Zhang XA, Bontrager AL, Hemler ME . Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 2001; 276: 25005–25013.

    Article  CAS  Google Scholar 

  16. Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 2009; 7: 787–798.

    Article  CAS  Google Scholar 

  17. Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR et al. CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 2008; 68: 3204–3213.

    Article  CAS  Google Scholar 

  18. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP . The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 2008; 13: 221–234.

    Article  CAS  Google Scholar 

  19. Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 2001; 7: 4109–4114.

    CAS  PubMed  Google Scholar 

  20. Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer 2003; 89: 158–167.

    Article  CAS  Google Scholar 

  21. Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG . CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev 2004; 13 (Pt 1): 1717–1721.

    CAS  PubMed  Google Scholar 

  22. Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS . A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 2006; 17: 2707–2721.

    Article  CAS  Google Scholar 

  23. Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C et al. Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 2008; 283: 35445–35454.

    Article  CAS  Google Scholar 

  24. Liu L, He B, Liu WM, Zhou D, Cox JV, Zhang XA . Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 2007; 282: 31631–31642.

    Article  CAS  Google Scholar 

  25. Sugiura T, Berditchevski F . Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 1999; 146: 1375–1389.

    Article  CAS  Google Scholar 

  26. Zhou H, Kramer RH . Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem 2005; 280: 10624–10635.

    Article  CAS  Google Scholar 

  27. Frank DE, Carter WG . Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J Cell Sci 2004; 117: 1351–1363.

    Article  CAS  Google Scholar 

  28. Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME . Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 2000; 275: 9230–9238.

    Article  CAS  Google Scholar 

  29. Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A . Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 2002; 115: 1161–1173.

    CAS  PubMed  Google Scholar 

  30. Morton PE, Parsons M . Measuring FRET using time-resolved FLIM. Methods Mol Biol 2011; 769: 403–413.

    Article  CAS  Google Scholar 

  31. Worth DC, Parsons M . Adhesion dynamics: mechanisms and measurements. Int J Biochem Cell Biol 2008; 40: 2397–2409.

    Article  CAS  Google Scholar 

  32. Parsons M, Messent AJ, Humphries JD, Deakin NO, Humphries MJ . Quantification of integrin receptor agonism by fluorescence lifetime imaging. J Cell Sci 2008; 121: 265–271.

    Article  CAS  Google Scholar 

  33. Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002; 13: 767–781.

    Article  CAS  Google Scholar 

  34. Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ . Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 2001; 276: 41165–41174.

    Article  CAS  Google Scholar 

  35. Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, Hynes RO . Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J Cell Biol 1998; 142: 1357–1369.

    Article  CAS  Google Scholar 

  36. Wang Z, Symons JM, Goldstein SL, McDonald A, Miner JH, Kreidberg JA . (Alpha)3(beta)1 integrin regulates epithelial cytoskeletal organization. J Cell Sci 1999; 112: Pt 17 2925–2935.

    CAS  PubMed  Google Scholar 

  37. Nakamura T, Kurokawa K, Kiyokawa E, Matsuda M . Analysis of the spatiotemporal activation of rho GTPases using Raichu probes. Methods Enzymol 2006; 406: 315–332.

    Article  CAS  Google Scholar 

  38. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008; 456: 957–961.

    Article  CAS  Google Scholar 

  39. Lichtner RB, Howlett AR, Lerch M, Xuan JA, Brink J, Langton-Webster B et al. Negative cooperativity between alpha 3 beta 1 and alpha 2 beta 1 integrins in human mammary carcinoma MDA MB 231 cells. Exp Cell Res 1998; 240: 368–376.

    Article  CAS  Google Scholar 

  40. Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME . An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 2002; 158: 1299–1309.

    Article  CAS  Google Scholar 

  41. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR . Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778–790.

    Article  CAS  Google Scholar 

  42. Nishiya N, Kiosses WB, Han J, Ginsberg MH . An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 2005; 7: 343–352.

    Article  CAS  Google Scholar 

  43. Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M, El-Sibai M et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J Cell Biol 2008; 180: 1245–1260.

    Article  CAS  Google Scholar 

  44. Egeblad M, Rasch MG, Weaver VM . Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 2010; 22: 697–706.

    Article  CAS  Google Scholar 

  45. Mitchell K, Svenson KB, Longmate WM, Gkirtzimanaki K, Sadej R, Wang X et al. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res 2010; 70: 6359–6367.

    Article  CAS  Google Scholar 

  46. Arthur WT, Burridge K . RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 2001; 12: 2711–2720.

    Article  CAS  Google Scholar 

  47. Sah VP, Seasholtz TM, Sagi SA, Brown JH . The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 2000; 40: 459–489.

    Article  CAS  Google Scholar 

  48. Takeda Y, Li Q, Kazarov AR, Epardaud M, Elpek K, Turley SJ et al. Diminished metastasis in tetraspanin CD151-knockout mice. Blood 2011; 118: 464–472.

    Article  CAS  Google Scholar 

  49. Gu J, Sumida Y, Sanzen N, Sekiguchi K . Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway. J Biol Chem 2001; 276: 27090–27097.

    Article  CAS  Google Scholar 

  50. Ridley AJ . Life at the leading edge. Cell 2011; 145: 1012–1022.

    Article  CAS  Google Scholar 

  51. Nobes CD, Hall A . Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.

    Article  CAS  Google Scholar 

  52. Ramirez NE, Zhang Z, Madamanchi A, Boyd KL, O'Rear LD, Nashabi A et al. The alphabeta integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest 2011; 121: 226–237.

    Article  CAS  Google Scholar 

  53. Calderwood DA, Tai V, Di Paolo G, De Camilli P, Ginsberg MH . Competition for talin results in trans-dominant inhibition of integrin activation. J Biol Chem 2004; 279: 28889–28895.

    Article  CAS  Google Scholar 

  54. Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 2006; 26: 7707–7718.

    Article  CAS  Google Scholar 

  55. Parsons M, Monypenny J, Ameer-Beg SM, Millard TH, Machesky LM, Peter M et al. Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol Cell Biol 2005; 25: 1680–1695.

    Article  CAS  Google Scholar 

  56. Worth DC, Hodivala-Dilke K, Robinson SD, King SJ, Morton PE, Gertler FB et al. Alpha v beta3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. J Cell Biol 2010; 189: 369–383.

    Article  CAS  Google Scholar 

  57. Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR et al. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 2008; 135: 1771–1780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Simon Ameer-Beg and Daniel Matthews for technical assistance and support with the multiphoton FLIM. This research was funded by grants from Cancer Research UK (to MP, FB and NH), the Wellcome Trust (to NH), the Biotechnology and Biological Sciences Research Council and Engineering and Physical Sciences Research Council (to BO) and a Royal Society University Research Fellowship (to MP).

Author contributions: TMES and MP designed and performed the experiments and wrote the manuscript. BO and MRH wrote software and analysed the protrusion and retraction behaviour in 3D and 2D, respectively. FB generated a number of the expression plasmids. NAH and FB participated in the design of the study and assisted in drafting the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Parsons.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scales, T., Jayo, A., Obara, B. et al. α3β1 integrins regulate CD151 complex assembly and membrane dynamics in carcinoma cells within 3D environments. Oncogene 32, 3965–3979 (2013). https://doi.org/10.1038/onc.2012.415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.415

Keywords

This article is cited by

Search

Quick links