Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells

Abstract

Rho signaling is increasingly recognized to contribute to invasion and metastasis. In this study, we discovered that metastasis-associated protein S100A4 interacts with the Rho-binding domain (RBD) of Rhotekin, thus connecting S100A4 to the Rho pathway. Glutathione S-transferase pull-down and immunoprecipitation assays demonstrated that S100A4 specifically and directly binds to Rhotekin RBD, but not the other Rho effector RBDs. S100A4 binding to Rhotekin is calcium-dependent and uses residues distinct from those bound by active Rho. Interestingly, we found that S100A4 and Rhotekin can form a complex with active RhoA. Using RNA interference, we determined that suppression of both S100A4 and Rhotekin leads to loss of Rho-dependent membrane ruffling in response to epidermal growth factor, an increase in contractile F-actin ‘stress’ fibers and blocks invasive growth in three-dimensional culture. Accordingly, our data suggest that interaction of S100A4 and Rhotekin permits S100A4 to complex with RhoA and switch Rho function from stress fiber formation to membrane ruffling to confer an invasive phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

shNT:

non-targeting shRNA

siNT:

non-targeting siRNA

RBD:

Rho-binding domain

References

  1. Garrett SC, Varney KM, Weber DJ, Bresnick AR . S100A4 a mediator of metastasis. J Biol Chem 2006; 281: 677–680.

    Article  CAS  PubMed  Google Scholar 

  2. Takenaga K, Nakanishi H, Wada K, Suzuki M, Matsuzaki O, Matsuura A et al. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas. Clin Cancer Res 1997; 3 (Part 1): 2309–2316.

    CAS  PubMed  Google Scholar 

  3. Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L et al. Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 2000; 60: 1595–1603.

    CAS  PubMed  Google Scholar 

  4. Boye K, Maelandsmo GM . S100A4 and metastasis: a small actor playing many roles. Am J Pathol 2010; 176: 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim EJ, Helfman DM . Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem 2003; 278: 30063–30073.

    Article  CAS  PubMed  Google Scholar 

  6. Li Z-H, Spektor A, Varlamova O, Bresnick AR . Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry 2003; 42: 14258–14266.

    Article  CAS  PubMed  Google Scholar 

  7. Li ZH, Bresnick AR . The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 2006; 66: 5173–5180.

    Article  CAS  PubMed  Google Scholar 

  8. Hall A . The cytoskeleton and cancer. Cancer Metast Rev 2009; 28: 5–14.

    Article  Google Scholar 

  9. Spiering D, Hodgson L . Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011; 5: 170–180.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V et al. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol 1999; 145: 347–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K et al. Rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor- and 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 1994; 14: 2247–2456.

    Article  Google Scholar 

  12. O’Connor KL, Nguyen B-K, Mercurio AM . RhoA function in lamellae formation and migration is regulated by the α6β4 integrin and cAMP. J Cell Biol 2000; 148: 253–258.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kurokawa K, Matsuda M . Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 2005; 16: 4294–4303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S . Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1999; 1: 136–143.

    Article  CAS  PubMed  Google Scholar 

  15. Tsuji T, Ishizaki T, Okamoto M, Higashida C, Kimura K, Furuyashiki T et al. ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J Cell Biol 2002; 157: 819–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reid T, Furuyashiki T, Ishizaki T, Watanabe G, Watanabe N, Fujisawa K et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the rho-binding domain. J Biol Chem 1996; 271: 13556–13560.

    Article  CAS  PubMed  Google Scholar 

  17. Nagata K, Ito H, Iwamoto I, Morishita R, Asano T . Interaction of a multi-domain adaptor protein, vinexin, with a Rho-effector, Rhotekin. Med Mol Morphol 2009; 42: 9–15.

    Article  CAS  PubMed  Google Scholar 

  18. Sudo K, Ito H, Iwamoto I, Morishita R, Asano T, Nagata K . Identification of a cell polarity-related protein, Lin-7B, as a binding partner for a Rho effector, Rhotekin, and their possible interaction in neurons. Neurosci Res 2006; 56: 347–355.

    Article  CAS  PubMed  Google Scholar 

  19. Ito H, Iwamoto I, Mizutani K, Morishita R, Deguchi T, Nozawa Y et al. Possible interaction of a Rho effector, Rhotekin, with a PDZ-protein, PIST, at synapses of hippocampal neurons. Neurosci Res 2006; 56: 165–171.

    Article  CAS  PubMed  Google Scholar 

  20. Ying-Tao Z, Yi-Ping G, Lu-Sheng S, Yi-Li W . Proteomic analysis of differentially expressed proteins between metastatic and non-metastatic human colorectal carcinoma cell lines. Eur J Gastroenterol Hepatol 2005; 17: 725–732.

    Article  PubMed  Google Scholar 

  21. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY . Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene 2004; 23: 8731–8742.

    Article  CAS  PubMed  Google Scholar 

  22. Fujisawa K, Madaule P, Ishizaki T, Watanabe G, Bito H, Saito Y et al. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 1998; 273: 18943–18949.

    Article  CAS  PubMed  Google Scholar 

  23. Narumiya S, Tanji M, Ishizaki T . Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metast Rev 2009; 28: 65–76.

    Article  CAS  Google Scholar 

  24. Bishop AL, Hall A . Rho GTPases and their effector proteins. Biochem J 2000; 348 (Part 2): 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY . Overexpression of rho effector rhotekin confers increased survival in gastric adenocarcinoma. J Biomed Sci 2004; 11: 661–670.

    Article  CAS  PubMed  Google Scholar 

  26. Garrett SC, Varney KM, Weber DJ, Bresnick AR . S100A4, a mediator of metastasis. J Biol Chem 2006; 281: 677–680.

    Article  CAS  PubMed  Google Scholar 

  27. Berdeaux RL, Diaz B, Kim L, Martin GS . Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J Cell Biol 2004; 166: 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 2005; 11: 267–274.

    Article  PubMed  Google Scholar 

  29. Wu D, Asiedu M, Wei Q . Myosin-interacting guanine exchange factor (MyoGEF) regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene 2009; 25: 2219–2230.

    Article  Google Scholar 

  30. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P et al. Coordination of Rho GTPase activities during cell protrusion. Nature 2009; 461: 99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pertz O, Hodgson L, Klemke RL, Hahn KM . Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440: 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  32. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR . Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pusapati GV, Eiseler T, Rykx A, Vandoninck S, Derua R, Waelkens E et al. Protein kinase D regulates RhoA activity via Rhotekin phosphorylation. J Biol Chem 2012; 287: 9473–9483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandquist JC, Swenson KI, Demali KA, Burridge K, Means AR . Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 2006; 281: 35873–35883.

    Article  CAS  PubMed  Google Scholar 

  35. Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR . S100A4 regulates macrophage chemotaxis. Mol Biol Cell 2010; 21: 2598–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trusolino L, Comoglio PM . Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002; 2: 289–300.

    Article  CAS  PubMed  Google Scholar 

  37. Andersen K, Mori H, Fata J, Bascom J, Oyjord T, Maelandsmo GM et al. The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev Biol 2011; 352: 181–190.

    Article  CAS  PubMed  Google Scholar 

  38. Friedl P, Wolf K . Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2009; 188: 11–19.

    Article  PubMed  Google Scholar 

  39. Condeelis JS, Wyckoff JB, Bailly M, Pestell R, Lawrence D, Backer J et al. Lamellipodia in invasion. Semin Cancer Biol 2001; 11: 119–128.

    Article  CAS  PubMed  Google Scholar 

  40. Wyckoff JB, Jones JG, Condeelis JS, Segall JE . A critical step in metastasis: in vivo analysis of intravasation at the primarytumor. Cancer Res 2000; 60: 2504–2511.

    CAS  PubMed  Google Scholar 

  41. Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA et al. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res 2011; 71: 747–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 82: 2093–2101.

    Article  Google Scholar 

  43. Zhao X, Lu L, Pokhriyal N, Ma H, Duan L, Lin S et al. Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res 2009; 69: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen M, Towers LN, O’Connor KL . LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol 2007; 292: C1927–C1933.

    Article  CAS  PubMed  Google Scholar 

  45. Chen M, Sinha M, Luxon BA, Bresnick AR, O’Connor KL . Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem 2009; 284: 1484–1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ito H, Iwamoto I, Morishita R, Nozawa Y, Narumiya S, Asano T et al. Possible role of Rho/Rhotekin signaling in mammalian septin organization. Oncogene 2005; 24: 7064–7072.

    Article  CAS  PubMed  Google Scholar 

  47. O’Connor KL, Chen M, Towers LN . Integrin α6β4 cooperates with LPA signaling to stimulate Rac through AKAP-Lbc-mediated RhoA activation. Am J Physiol Cell Physiol 2012; 302: C605–C614.

    Article  PubMed  Google Scholar 

  48. Kelloff GJ, Lubet RA, Fay JR, Steele VE, Boone CW, Crowell JA et al. Farnesyl protein transferase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1997; 6: 267–282.

    CAS  PubMed  Google Scholar 

  49. Vallely KM, Rustandi RR, Ellis KC, Varlamova O, Bresnick AR, Weber DJ . Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry 2002; 41: 12670–12680.

    Article  CAS  PubMed  Google Scholar 

  50. O’Connor KL, Shaw LM, Mercurio AM . Release of cAMP gating by the α6β4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J Cell Biol 1998; 143: 1749–1760.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu R, Spencer VA, Bissell MJ . Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 2007; 282: 14992–14999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ren Xu for his kind aid with 3D culture-related experiments; Dr Jianhang Jia for assistance with the confocal microscopy analysis; Drs Tianyan Gao and Jianyu Liu for reagents and technical support for generating shRNA stable cell line; Drs Kohich Nagata, Shuh Narumiya and G Steven Martin for reagents; Dr Juanjuan Yang for validating select data; and Diane Wright for assistance with graphics. This work was supported with National Institutes of Health Grants CA109136 (KLO) and CA129598 (ARB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Chen or K L O'Connor.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Bresnick, A. & O'Connor, K. Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 32, 3754–3764 (2013). https://doi.org/10.1038/onc.2012.383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.383

Keywords

This article is cited by

Search

Quick links