Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo

Abstract

Mixed lineage leukemias (MLLs) are human histone H3 lysine-4-specific methyl transferases that have critical roles in gene expression, epigenetics and cancer. Herein, we demonstrated that antisense-mediated knockdown of MLL1 induced cell-cycle arrest and apoptosis in cultured cells. Intriguingly, application of MLL1 antisense specifically knocked down MLL1 in vivo and suppressed the growth of xenografted cervical tumor implanted in nude mouse. MLL1 knockdown downregulated various growth and angiogenic factors, such as HIF1α, VEGF and CD31, in tumor tissue affecting tumor growth. MLL1 is overexpressed along the line of vascular network and localized adjacent to endothelial cell layer expressing CD31, indicating potential roles of MLL1 in vasculogenesis. MLL1 is also overexpressed in the hypoxic regions along with HIF1α. Overall, our studies demonstrated that MLL1 is a key factor in hypoxia signaling, vasculogenesis and tumor growth, and its depletion suppresses tumor growth in vivo, indicating its potential in novel cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Corey DR . Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 2002; 21: 631–637.

    Article  CAS  PubMed  Google Scholar 

  2. Gleave ME, Monia BP . Antisense therapy for cancer. Nat Rev Cancer 2005; 5: 468–479.

    Article  CAS  PubMed  Google Scholar 

  3. Lu B, Mu Y, Cao C, Zeng F, Schneider S, Tan J et al. Survivin as a therapeutic target for radiation sensitization in lung cancer. Cancer Res 2004; 64: 2840–2845.

    Article  CAS  PubMed  Google Scholar 

  4. Ryan BM, O′Donovan N, Duffy MJ . Survivin: a new target for anti-cancer therapy. Cancer Treat Rev 2009; 35: 553–562.

    Article  CAS  PubMed  Google Scholar 

  5. Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR . Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 2006; 32: 74–89.

    Article  CAS  PubMed  Google Scholar 

  6. Kang CS, Zhang ZY, Jia ZF, Wang GX, Qiu MZ, Zhou HX et al. Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo. Cancer Gene Ther 2006; 13: 530–538.

    Article  CAS  PubMed  Google Scholar 

  7. Kurdistani SK . Histone modifications in cancer biology and prognosis. Prog Drug Res 2011; 67: 91–106.

    CAS  PubMed  Google Scholar 

  8. Goldberg AD, Allis CD, Bernstein E . Epigenetics: a landscape takes shape. Cell 2007; 128: 635–638.

    Article  CAS  PubMed  Google Scholar 

  9. Sims RJ, Reinberg D . From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat Cell Biol 2004; 6: 685–687.

    Article  CAS  PubMed  Google Scholar 

  10. Travers J, Blagg J, Workman P . Epigenetics: targeting leukemia on the DOT. Nat Chem Biol 7: 663–665.

    Article  CAS  PubMed  Google Scholar 

  11. Dawson MA, Prinjha RK, Dittman A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ansari KI, Mishra BP, Mandal SS . Human CpG binding protein interacts with MLL1, MLL2 and hSet1 and regulates Hox gene expression. Biochim Biophys Acta 2008; 1779: 66–73.

    Article  CAS  PubMed  Google Scholar 

  13. Canaani E, Nakamura T, Rozovskaia T, Smith ST, Mori T, Croce CM et al. ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia. Br J Cancer 2004; 90: 756–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dou YL, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J et al. Physical association and coordinate function of the H3K4 methyltransferase MLL1 and the H4K16 acetyltransferase MOF. Cell 2005; 121: 873–885.

    Article  CAS  PubMed  Google Scholar 

  15. Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland KR et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 2006; 133: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  16. Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 2005; 102: 8603–8608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 1999; 96: 14372–14377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hess JL . MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10: 500–507.

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA 2008; 105: 19229–19234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JH, Skalnik DG . CpG-binding protein is a nuclear matrix- and euchromatin-associated protein localized to nuclear speckles containing human trithorax. Identification of nuclear matrix targeting signals. J Biol Chem 2002; 277: 42259–42267.

    Article  CAS  PubMed  Google Scholar 

  21. Mishra BP, Ansari KI, Mandal SS . Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle. FEBS J 2009; 276: 1629–1640.

    Article  CAS  PubMed  Google Scholar 

  22. Ruthenburg AJ, Wang WK, Graybosch DM, Li HT, Allis CD, Patel DJ et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 2006; 13: 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhaumik SR, Smith E, Shilatifard A . Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 2007; 14: 1008–1016.

    Article  CAS  PubMed  Google Scholar 

  25. Cuthbert G, Thompson K, McCullough S, Watmore A, Dickinson H, Telford N et al. MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. Leukemia 2000; 14: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  26. Ansari KI, Mandal SS . Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J 2010; 277: 1790–1804.

    Article  CAS  PubMed  Google Scholar 

  27. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331: 435–439.

    Article  CAS  PubMed  Google Scholar 

  28. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulussen AD, Stegmann AP, Blok MJ, Tserpelis D, Posma-Velter C, Detisch Y et al. MLL2 mutation spectrum in 45 patients with Kabuki syndrome. Hum Mutat 2010; 32: E2018–E2025.

    Article  PubMed  Google Scholar 

  30. Saigo K, Yoshida K, Ikeda R, Sakamoto Y, Murakami Y, Urashima T et al. Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum Mutat 2008; 29: 703–708.

    Article  CAS  PubMed  Google Scholar 

  31. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44: 760–764.

    Article  CAS  PubMed  Google Scholar 

  32. Wang XX, Fu L, Li X, Wu X, Zhu Z, Fu L et al. Somatic mutations of the mixed-lineage leukemia 3 (MLL3) gene in primary breast cancers. Pathol Oncol Res 2011; 17: 429–433.

    Article  PubMed  Google Scholar 

  33. Watanabe Y, Castoro RJ, Kim HS, North B, Oikawa R, Hiraishi T et al. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer. PLoS One 2011; 6: e23320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crawford BD, Hess JL . MLL core components give the green light to histone methylation. ACS Chem Biol 2006; 1: 495–498.

    Article  CAS  PubMed  Google Scholar 

  35. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006; 13: 713–719.

    Article  CAS  PubMed  Google Scholar 

  36. Deng LW, Chiu I, Strominger JL . MLL 5 protein forms intranuclear foci, and overexpression inhibits cell cycle progression. Proc Natl Acad Sci USA 2004; 101: 757–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsieh JJD, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003; 23: 186–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ansari KI, Hussain I, Das HK, Mandal SS . Overexpression of human histone methylase MLL1 upon exposure to a food contaminant mycotoxin, deoxynivalenol. FEBS J 2009; 276: 3299–3307.

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 2010; 467: 343–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee JS, Kim KI, Baek SH . Nuclear receptors and coregulators in inflammation and cancer. Cancer Lett 2008; 267: 189–196.

    Article  CAS  PubMed  Google Scholar 

  41. Ansari KI, Hussain I, Shrestha B, Kasiri S, Mandal SS . HOXC6 Is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor in an estrogen environment. J Mol Biol 2011; 411: 334–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ansari KI, Shrestha B, Hussain I, Kasiri S, Mandal SS . Histone methylases MLL1 and MLL3 coordinate with estrogen receptors in estrogen-mediated HOXB9 expression. Biochemistry 2011; 50: 3517–3527.

    Article  CAS  PubMed  Google Scholar 

  43. Bromleigh VC, Freedman LP . p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev 2000; 14: 2581–2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obaya AJ, Sedivy JM . Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 2002; 59: 126–142.

    Article  CAS  PubMed  Google Scholar 

  45. Satyanarayana A, Kaldis P . Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28: 2925–2939.

    Article  CAS  PubMed  Google Scholar 

  46. Joaquin M, Gubern A, Gonzalez-Nunez D, Josue Ruiz E, Ferreiro I, de Nadal E et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. Embo J 2012; 31: 2952–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lendahl U, Lee KL, Yang H, Poellinger L . Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 2009; 10: 821–832.

    Article  CAS  PubMed  Google Scholar 

  48. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468: 824–828.

    Article  CAS  PubMed  Google Scholar 

  49. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468: 829–833.

    Article  CAS  PubMed  Google Scholar 

  50. Monti E, Gariboldi MB . HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr Mol Pharmacol 2011; 4: 62–77.

    Article  CAS  PubMed  Google Scholar 

  51. Lee KA, Roth RA, LaPres JJ . Hypoxia, drug therapy and toxicity. Pharmacol Ther 2007; 113: 229–246.

    Article  CAS  Google Scholar 

  52. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hendriksen EM, Span PN, Schuuring J, Peters JP, Sweep FC, van der Kogel AJ et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res 2009; 77: 96–103.

    Article  CAS  PubMed  Google Scholar 

  54. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  55. Diehl F, Rossig L, Zeiher AM, Dimmeler S, Urbich C . The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood 2007; 109: 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  56. Ansari KI, Grant JD, Kasiri S, Woldemariam G, Shrestha B, Mandal SS . Manganese(III)-salens induce tumor selective apoptosis in human cells. J Inorg Biochem 2009; 103: 818–826.

    Article  CAS  PubMed  Google Scholar 

  57. Singhal SS, Singhal J, Yadav S, Dwivedi S, Boor PJ, Awasthi YC et al. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1). Cancer Res 2007; 67: 4382–4389.

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Hang J, Shi Z, Li M, Yu D, Kandimalla ER et al. Antisense oligonucleotide targeted to RIalpha subunit of cAMP-dependent protein kinase (GEM231) enhances therapeutic effectiveness of cancer chemotherapeutic agent irinotecan in nude mice bearing human cancer xenografts: in vivo synergistic activity, pharmacokinetics and host toxicity. Int J Oncol 2002; 21: 73–80.

    CAS  PubMed  Google Scholar 

  59. Wang D, Stockard CR, Harkins L, Lott P, Salih C, Yuan K et al. Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem 2008; 83: 179–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Linda Perrotti and Samara Morris-Bobzean for their technical assistance with tissue sectioning and Mandal lab members for discussion. Mandal research is supported by grants from NIH (1R15 ES019129–01, 2R15 CA113747–02) and NSF (0821969).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Mandal.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, K., Kasiri, S. & Mandal, S. Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene 32, 3359–3370 (2013). https://doi.org/10.1038/onc.2012.352

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.352

Keywords

This article is cited by

Search

Quick links