Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aneuploid human colonic epithelial cells are sensitive to AICAR-induced growth inhibition through EGFR degradation

Abstract

Trisomy for chromosome 7 is frequently observed as an initiating event in sporadic colorectal cancer. Although unstable chromosome numbers and recurrent aneuploidies drive a large fraction of human cancers, targeted therapies selective to pre-neoplastic trisomic cells are non-existent. We have previously characterized a trisomy 7 cell line (1CT+7) spontaneously derived from normal diploid human colonic epithelial cells that aberrantly expresses the epidermal growth factor receptor (EGFR, chromosome 7p11). Recent studies identified AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) as a pharmacological inhibitor of aneuploid murine fibroblast proliferation. Here, we report that AICAR induces profound cytostatic and metabolic effects on 1CT+7 cells, but not on their isogenic diploid counterpart. Dose–response experiments indicate that 1CT+7 cells are fourfold preferentially sensitive to AICAR compared to diploid cells. Unexpectedly, treatment of 1CT+7 cells with AICAR led to a reversible 3.5-fold reduction (P=0.0025) in EGFR overexpression. AICAR-induced depletion of EGFR protein can be abrogated through inhibition of the proteasome with MG132. AICAR also heavily promoted EGFR ubiquitination in cell-based immunoprecipitation assays, suggesting enhanced degradation of EGFR protein mediated by the proteasome. Moreover, treatment with AICAR reduced EGFR protein levels in a panel of human colorectal cancer cells in vitro and in xenograft tumors in vivo. Our data collectively support the pharmacological compound AICAR as a novel inhibitor of EGFR protein abundance and as a potential anticancer agent for aneuploidy-driven colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gordon DJ, Resio B, Pellman D . Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13: 189–203.

    Article  CAS  PubMed  Google Scholar 

  2. Sheltzer JM, Amon A . The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 2011; 27: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakhoum SF, Compton DA . Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 2012; 122: 1138–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C . Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep 2012; 13: 528–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW . Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11: 25–36.

    Article  CAS  PubMed  Google Scholar 

  6. Habermann JK, Paulsen U, Roblick UJ, Upender MB, McShane LM, Korn EL et al. Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer 2007; 46: 10–26.

    Article  CAS  PubMed  Google Scholar 

  7. Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, Heim S . Clonal karyotypic abnormalities in colorectal adenomas: clues to the early genetic events in the adenoma–carcinoma sequence. Genes Chromosomes Cancer 1994; 10: 190–196.

    Article  CAS  PubMed  Google Scholar 

  8. Manchado E, Malumbres M . Targeting aneuploidy for cancer therapy. Cell 2011; 144: 465–466.

    Article  CAS  PubMed  Google Scholar 

  9. Ly P, Eskiocak U, Kim SB, Roig AI, Hight SK, Lulla DR et al. Characterization of aneuploid populations with trisomy 7 and 20 derived from diploid human colonic epithelial cells. Neoplasia 2011; 13: 348–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF et al. Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology 2010; 138: e1–e5.

    Article  Google Scholar 

  11. Briand P, Nielsen KV, Madsen MW, Petersen OW . Trisomy 7p and malignant transformation of human breast epithelial cells following epidermal growth factor withdrawal. Cancer Res 1996; 56: 2039–2044.

    CAS  PubMed  Google Scholar 

  12. Sareen D, McMillan E, Ebert AD, Shelley BC, Johnson JA, Meisner LF et al. Chromosome 7 and 19 trisomy in cultured human neural progenitor cells. PLoS One 2009; 4: e7630.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garewal H, Meltzer P, Trent J, Prabhala R, Sampliner R, Korc M . Epidermal growth factor receptor overexpression and trisomy 7 in a case of Barrett’s esophagus. Dig Dis Sci 1990; 35: 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  14. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  15. Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH . Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 2002; 156: 843–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dikic I . Mechanisms controlling EGF receptor endocytosis and degradation. Biochem Soc Trans 2003; 31: 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  17. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.

    Article  CAS  PubMed  Google Scholar 

  18. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998; 12: 3663–3674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen G, Mustafi R, Chumsangsri A, Little N, Nathanson J, Cerda S et al. Epidermal growth factor receptor signaling is up-regulated in human colonic aberrant crypt foci. Cancer Res 2006; 66: 5656–5664.

    Article  CAS  PubMed  Google Scholar 

  20. Messersmith WA, Ahnen DJ . Targeting EGFR in colorectal cancer. N Engl J Med 2008; 359: 1834–1836.

    Article  CAS  PubMed  Google Scholar 

  21. Tang YC, Williams BR, Siegel JJ, Amon A . Identification of aneuploidy-selective antiproliferation compounds. Cell 2011; 144: 499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA 2009; 106: 12932–12937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ . Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 2002; 51: 567–573.

    Article  CAS  PubMed  Google Scholar 

  25. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008; 322: 703–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang F, Goh LK, Sorkin A . EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 2007; 104: 16904–16909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meltzer SJ, Yin J, Manin B, Rhyu MG, Cottrell J, Hudson E et al. Microsatellite instability occurs frequently and in both diploid and aneuploid cell populations of Barrett’s-associated esophageal adenocarcinomas. Cancer Res 1994; 54: 3379–3382.

    CAS  PubMed  Google Scholar 

  28. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317: 916–924.

    Article  CAS  PubMed  Google Scholar 

  29. Chen G, Bradford WD, Seidel CW, Li R . Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 2012; 482: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010; 468: 321–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP et al. Identification of aneuploidy-tolerating mutations. Cell 2010; 143: 71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gazdar AF, Shigematsu H, Herz J, Minna JD . Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med 2004; 10: 481–486.

    Article  CAS  PubMed  Google Scholar 

  33. Das AK, Chen BP, Story MD, Sato M, Minna JD, Chen DJ et al. Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res 2007; 67: 5267–5274.

    Article  CAS  PubMed  Google Scholar 

  34. Rattan R, Giri S, Singh AK, Singh I . 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 2005; 280: 39582–39593.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamprecht SA, Lipkin M . Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis 2002; 23: 1777–1780.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank RY Quach for figure artwork and U Eskiocak, G Stadler and AR Mullen (UT Southwestern) for technical assistance. We also express gratitude to YC Tang and A Amon (MIT) for providing xenograft tumors for IHC analysis and for critical reading of the manuscript. HA-tagged ubiquitin plasmids and anti-HA antibodies were a kind gift from LJ Huang (UT Southwestern). EGFR-V5 expression constructs and human bronchial epithelial cell-EGFR cell lines were provided by C Nirodi (UT Southwestern). This work was supported by CPRIT Training Grant RP101496 to PL, NASA Grants NNX09AU95G, NNX11AC15G, and NNX11AC54G and NCI SPORE CA70907 to JWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J W Shay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, P., Kim, S., Kaisani, A. et al. Aneuploid human colonic epithelial cells are sensitive to AICAR-induced growth inhibition through EGFR degradation. Oncogene 32, 3139–3146 (2013). https://doi.org/10.1038/onc.2012.339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.339

Keywords

This article is cited by

Search

Quick links