Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer

Abstract

Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

ChIP:

chromatin immunoprecipitation

5-Aza-CdR:

5-Aza-2′-deoxycytidine

IP:

immunoprecipitation

FCS:

fetal calf serum

CSFCS:

charcoal-stripped fetal calf Serum

DHT:

dihydrotestosterone

PSA:

prostate specific antigen

AR:

androgen receptor

BRFS:

biochemical relapse free survival.

References

  1. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper CS, Foster CS . Concepts of epigenetics in prostate cancer development. Br J Cancer 2009; 100: 240–245.

    Article  CAS  PubMed  Google Scholar 

  3. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho WC . OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 2007; 6: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Onco 2008; 27: 1788–1793.

    Article  CAS  Google Scholar 

  6. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotech 2008; 26: 462–469.

    Article  CAS  Google Scholar 

  7. Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL et al. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 2011; 12: 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu H, Zhu S, Mo YY . Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 2009; 19: 439–448.

    Article  CAS  PubMed  Google Scholar 

  9. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T et al. microRNA-205 Regulates HER3 in human breast cancer. Cancer Res 2009; 69: 2195–2200.

    Article  CAS  PubMed  Google Scholar 

  10. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G et al. Altered microrna expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007; 67: 11612–11620.

    Article  CAS  PubMed  Google Scholar 

  11. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 2009; 69: 2287–2295.

    Article  CAS  PubMed  Google Scholar 

  12. Neely LA, Rieger-Christ KM, Neto BS, Eroshkin A, Garver J, Patel S et al. A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol Oncol 2010; 28: 39–48.

    Article  CAS  PubMed  Google Scholar 

  13. Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 2009; 174: 736–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M et al. MicroRNA expression profiles of esophageal cancer. J Thoracic Cardiovasc Surg 2008; 135: 255–260; discussion 60.

    Article  CAS  Google Scholar 

  15. Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer 2009; 124: 1358–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699–8707.

    Article  CAS  PubMed  Google Scholar 

  17. Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009; 27: 2030–2037.

    Article  CAS  PubMed  Google Scholar 

  18. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 2006; 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  19. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES . Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54: 1696–1704.

    Article  CAS  PubMed  Google Scholar 

  20. Fletcher AM, Heaford AC, Trask DK . Detection of metastatic head and neck squamous cell carcinoma using the relative expression of tissue-specific mir-205. Trans Oncol 2008; 1: 202–208.

    Article  Google Scholar 

  21. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM . MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 2008; 105: 19300–19305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O′Brien C et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Comm 2007; 358: 12–17.

    Article  CAS  PubMed  Google Scholar 

  23. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007; 25: 387–392.

    Article  CAS  PubMed  Google Scholar 

  24. Ryan DG, Oliveira-Fernandes M, Lavker RM . MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 2006; 12: 1175–1184.

    CAS  PubMed  Google Scholar 

  25. Dijckmeester WA, Wijnhoven BP, Watson DI, Leong MP, Michael MZ, Mayne GC et al. MicroRNA-143 and −205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett′s esophagus. J Gastrointest Surg 2009; 13: 846–853.

    Article  PubMed  Google Scholar 

  26. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  27. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 2010; 116: 5637–5649.

    Article  CAS  PubMed  Google Scholar 

  30. Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y . MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J 2010; 24: 2030–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Sharma D, Ren Y, Fondell JD . A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression. J Biol Chem 2002; 277: 42852–42858.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Carroll JS, Brown M . Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005; 19: 631–642.

    Article  CAS  PubMed  Google Scholar 

  33. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    CAS  PubMed  Google Scholar 

  34. Damber JE, Aus G . Prostate cancer. Lancet 2008; 371: 1710–1721.

    Article  PubMed  Google Scholar 

  35. Vijayvargia R, May MS, Fondell JD . A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res 2007; 67: 4034–4041.

    Article  CAS  PubMed  Google Scholar 

  36. Belakavadi M, Pandey PK, Vijayvargia R, Fondell JD . MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol Cell Biol 2008; 28: 3932–3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 2010; 128: 1327–1334.

    Article  Google Scholar 

  38. Ke XS, Qu Y, Rostad K, Li WC, Lin B, Halvorsen OJ et al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE 2009; 4: e4687.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ . Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 2010; 38: 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koschubs T, Lorenzen K, Baumli S, Sandstrom S, Heck AJ, Cramer P . Preparation and topology of the Mediator middle module. Nucleic Acids Res 2010; 38: 3186–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R, Atkins GB et al. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci USA 1999; 96: 10848–10853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia L, Coetzee GA . Androgen receptor-dependent PSA expression in androgen-independent prostate cancer cells does not involve androgen receptor occupancy of the PSA locus. Cancer Res 2005; 65: 8003–8008.

    Article  CAS  PubMed  Google Scholar 

  43. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC et al. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 2006; 103: 18928–18933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kornberg RD . Mediator and the mechanism of transcriptional activation. Trends in Biochemsci 2005; 30: 235–239.

    Article  CAS  Google Scholar 

  45. Platica M, Verma RS, Macera MJ, Platica O . LNCaP-OM, a new androgen-resistant prostate cancer subline. In Vitro Cell Dev Biol Anim 1997; 33: 147–149.

    Article  CAS  PubMed  Google Scholar 

  46. Devaney J, Stirzaker C, Qu W, Song JZ, Statham AL, Patterson KI et al. Epigenetic deregulation across 2q14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol Biomarkers Prev 2011; 20: 148–159.

    Article  CAS  PubMed  Google Scholar 

  47. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69: 4443–4453.

    Article  CAS  PubMed  Google Scholar 

  48. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ . Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 2002; 21: 1048–1061.

    Article  CAS  PubMed  Google Scholar 

  49. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ . Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 2007; 35: e119.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Clark SJ, Harrison J, Paul CL, Frommer M . High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22: 2990–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  53. Horvath LG, Henshall SM, Kench JG, Saunders DN, Lee CS, Golovsky D et al. Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clin Cancer Res 2004; 10: 615–625.

    Article  CAS  PubMed  Google Scholar 

  54. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Gillian Lehrbach, Ann-Maree Haynes, Ruth Pe Benito and Clarisse Puno for technical assistance. This work is supported by Cancer Institute NSW (CINSW), Cure Cancer Australia fellowships (TH), and National Health and Medical Research Council and CINSW project grants (SJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Clark.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulf, T., Sibbritt, T., Wiklund, E. et al. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 32, 2891–2899 (2013). https://doi.org/10.1038/onc.2012.300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.300

Keywords

This article is cited by

Search

Quick links