Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Hedgehog processing pathway is required for NSCLC growth and survival

Abstract

Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059–3087.

    Article  CAS  PubMed  Google Scholar 

  2. Farzan SF, Singh S, Schilling NS, Robbins DJ . The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 2008; 294: G844–G849.

    Article  CAS  PubMed  Google Scholar 

  3. Teglund S, Toftgård R . Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 2010; 1805: 181–208.

    CAS  PubMed  Google Scholar 

  4. Yang L, Xie G, Fan Q, Xie J . Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010; 29: 469–481.

    Article  PubMed  Google Scholar 

  5. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384: 129–134.

    Article  CAS  PubMed  Google Scholar 

  6. Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ . Biochemical evidence that patched is the Hedgehog receptor. Nature 1996; 384: 176–179.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Struhl G . Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996; 87: 553–563.

    Article  CAS  PubMed  Google Scholar 

  8. Quirk J, van den Heuvel M, Henrique D, Marigo V, Jones TA, Tabin C et al. The smoothened gene and hedgehog signal transduction in Drosophila and vertebrate development. Cold Spring Harb Symp Quant Biol 1997; 62: 217–226.

    Article  CAS  PubMed  Google Scholar 

  9. Stecca B, Ruiz i Altaba A . Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2: 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoff Von DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009; 361: 1164–1172.

    Article  Google Scholar 

  11. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361: 1173–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Low JA, de Sauvage FJ . Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol 2010; 28: 5321–5326.

    Article  CAS  PubMed  Google Scholar 

  13. Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326: 572–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dijkgraaf GJP, Alicke B, Weinmann L, Januario T, West K, Modrusan Z et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 2011; 71: 435–444.

    Article  CAS  PubMed  Google Scholar 

  15. Mann RK, Beachy PA . Novel lipid modifications of secreted protein signals. Annu Rev Biochem 2004; 73: 891–923.

    Article  CAS  PubMed  Google Scholar 

  16. Porter JA, Young KE, Beachy PA . Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996; 274: 255–259.

    Article  CAS  PubMed  Google Scholar 

  17. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 1998; 273: 14037–14045.

    Article  CAS  PubMed  Google Scholar 

  18. Chamoun Z, Mann RK, Nellen D, Kessler von DP, Bellotto M, Beachy PA et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 2001; 293: 2080–2084.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JD, Treisman JE . Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr Biol 2001; 11: 1147–1152.

    Article  CAS  PubMed  Google Scholar 

  20. Amanai K, Jiang J . Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 2001; 128: 5119–5127.

    CAS  PubMed  Google Scholar 

  21. Micchelli CA, The I, Selva E, Mogila V, Perrimon N . Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 2001; 129: 843–851.

    Google Scholar 

  22. Buglino JA, Resh MD . Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 2008; 283: 22076–22088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor FR, Wen D, Garber EA, Carmillo AN, Baker DP, Arduini RM et al. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 2001; 40: 4359–4371.

    Article  CAS  PubMed  Google Scholar 

  24. Kohtz JD, Lee HY, Gaiano N, Segal J, Ng E, Larson T et al. N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 2001; 128: 2351–2363.

    CAS  PubMed  Google Scholar 

  25. Burke R, Nellen D, Bellotto M, Hafen E, Senti KA, Dickson BJ et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 1999; 99: 803–815.

    Article  CAS  PubMed  Google Scholar 

  26. Caspary T, García-García MJ, Huangfu D, Eggenschwiler JT, Wyler MR, Rakeman AS et al. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol 2002; 12: 1628–1632.

    Article  CAS  PubMed  Google Scholar 

  27. Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 2002; 111: 63–75.

    Article  CAS  PubMed  Google Scholar 

  28. Kawakami T, Kawcak T, Li Y-J, Zhang W, Hu Y, Chuang P-T . Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 2002; 129: 5753–5765.

    Article  CAS  PubMed  Google Scholar 

  29. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT . Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 2004; 18: 641–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang XM, Ramalho-Santos M, McMahon AP . Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001; 105: 781–792.

    Article  CAS  PubMed  Google Scholar 

  31. Singh S, Wang Z, Liang Fei D, Black KE, Goetz JA, Tokhunts R et al. Hedgehog-Producing Cancer Cells Respond to and Require Autocrine Hedgehog Activity. Cancer Res 2011; 71: 4454–4463.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Z, Goetz JA, Singh S, Ogden SK, Petty WJ, Black CC et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene 2007; 26: 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  33. Ma Y, Fiering S, Black C, Liu X, Yuan Z, Memoli VA et al. Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci USA 2007; 104: 4089–4094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H . Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer 2009; 66: 64–74.

    Article  PubMed  Google Scholar 

  35. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 2002; 99: 14071–14076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cooper MK, Porter JA, Young KE, Beachy PA . Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280: 1603–1607.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH et al. Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res 2009; 15: 1177–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A et al. Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected]. J Biotechnol 1992; 25: 231–243.

    Article  CAS  PubMed  Google Scholar 

  39. Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA et al. Activation of Hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res 2010; 70: 1981–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katoh Y, Katoh M . Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009; 9: 873–886.

    Article  CAS  PubMed  Google Scholar 

  41. Miura GI, Buglino J, Alvarado D, Lemmon MA, Resh MD, Treisman JE . Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev Cell 2006; 10: 167–176.

    Article  CAS  PubMed  Google Scholar 

  42. Sinha S, Chen JK . Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol 2006; 2: 29–30.

    Article  CAS  PubMed  Google Scholar 

  43. Lockwood WW, Chari R, Coe BP, Thu KL, Garnis C, Malloff CA et al. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. Plos Med 2010; 7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neal JW, Sequist LV . Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh. Curr Treat Options Oncol 2010; 11: 36–44.

    Article  PubMed  Google Scholar 

  45. Lauth M, Bergström A, Shimokawa T, Toftgård R . Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 2001; 104: 8455–8460.

    Article  Google Scholar 

  46. Ng JMY, Curran T . The Hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer 2011; 11: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A et al. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 1997; 57: 2331–2335.

    CAS  PubMed  Google Scholar 

  48. Tai ALS, Yan W-S, Fang Y, Xie D, Sham JST, Guan X-Y . Recurrent chromosomal imbalances in nonsmall cell lung carcinoma: the association between 1q amplification and tumor recurrence. Cancer 2004; 100: 1918–1927.

    Article  PubMed  Google Scholar 

  49. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272: 1668–1671.

    Article  CAS  PubMed  Google Scholar 

  50. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851.

    Article  CAS  PubMed  Google Scholar 

  51. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997; 57: 2369–2372.

    CAS  PubMed  Google Scholar 

  52. Goodrich LV, Milenkovic L, Higgins KM, Scott MP . Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277: 1109–1113.

    Article  CAS  PubMed  Google Scholar 

  53. Adolphe C, Hetherington R, Ellis T, Wainwright B . Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 2006; 66: 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  54. Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom L-G, Toftgård R, Undén AB . Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 2006; 208: 17–25.

    Article  CAS  PubMed  Google Scholar 

  55. Shen T, Park WS, Böni R, Saini N, Pham T, Lash AE et al. Detection of loss of heterozygosity on chromosome 9q22.3 in microdissected sporadic basal cell carcinoma. Hum Pathol 1999; 30: 284–287.

    Article  CAS  PubMed  Google Scholar 

  56. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391: 90–92.

    Article  CAS  PubMed  Google Scholar 

  57. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004; 64: 6071–6074.

    Article  CAS  PubMed  Google Scholar 

  58. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425: 851–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425: 846–851.

    Article  CAS  PubMed  Google Scholar 

  60. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422: 313–317.

    Article  CAS  PubMed  Google Scholar 

  61. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    Article  CAS  PubMed  Google Scholar 

  62. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431: 707–712.

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez P, Hernández AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 2004; 101: 12561–12566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mas C . Ruiz i Altaba A. Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem Pharmacol 2010; 80: 712–723.

    Article  CAS  PubMed  Google Scholar 

  65. Stanton BZ, Peng LF . Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol Biosyst 2010; 6: 44–54.

    Article  CAS  PubMed  Google Scholar 

  66. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008; 455: 406–410.

    Article  CAS  PubMed  Google Scholar 

  67. Lauth M, Bergström A, Shimokawa T, Tostar U, Jin Q, Fendrich V et al. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010; 17: 718–725.

    Article  CAS  PubMed  Google Scholar 

  68. Park K-S, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 2011; 17: 1504–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh S, Tokhunts R, Baubet V, Goetz JA, Huang ZJ, Schilling NS et al. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner. Hum Genet 2009; 125: 95–103.

    Article  CAS  PubMed  Google Scholar 

  70. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  71. Zeng X, Goetz JA, Suber LM, Scott WJ, Schreiner CM, Robbins DJ . A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 2001; 411: 716–720.

    Article  CAS  PubMed  Google Scholar 

  72. Goetz JA, Singh S, Suber LM, Kull FJ, Robbins DJ . A highly conserved amino-terminal region of sonic hedgehog is required for the formation of its freely diffusible multimeric form. J Biol Chem 2006; 281: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  73. Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Thérond PP . Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 1997; 90: 225–234.

    Article  CAS  PubMed  Google Scholar 

  74. Petty WJ, Li N, Biddle A, Bounds R, Nitkin C, Ma Y et al. A novel retinoic acid receptor beta isoform and retinoid resistance in lung carcinogenesis. J Natl Cancer Inst 2005; 97: 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  75. Denizot F, Lang R . Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986; 89: 271–277.

    Article  CAS  PubMed  Google Scholar 

  76. Fernandez C, Tatard VM, Bertrand N, Dahmane N . Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 2010; 32: 59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu Z, Irizarry R . Gentleman R, Martinez-Murillo F, Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004; 99: 909–917.

    Article  Google Scholar 

  78. Lee E-S, Son D-S, Kim S-H, Lee J, Jo J, Han J et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res 2008; 14: 7397–7404.

    Article  CAS  PubMed  Google Scholar 

  79. Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, Xu EC et al. Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer 2009; 63: 32–38.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants GM64011 (DJ Robbins), R03-CA132166 (E Dmitrovsky), R01-CA087546 (E Dmitrovsky) and R01-CA111422 (E Dmitrovsky); grants from the Samuel Waxman Cancer Research Foundation (E Dmitrovsky, A Capobianco); FICYT-POST10-27 (J Rodriguez-Blanco) and from the American Lung Association/LUNGevity Foundation (DJ Robbins). E Dmitrovsky is an American Cancer Society Professor supported by a generous gift from the FM Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Robbins.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Blanco, J., Schilling, N., Tokhunts, R. et al. The Hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 32, 2335–2345 (2013). https://doi.org/10.1038/onc.2012.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.243

Keywords

This article is cited by

Search

Quick links