Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depletion of the receptor for advanced glycation end products (RAGE) sensitizes towards apoptosis via p53 and p73 posttranslational regulation

Abstract

The receptor for advanced glycation endproduct (RAGE) is involved in diabetic complications and chronic inflammation, conditions known to affect the sensitivity towards apoptosis. Here, we studied the effect of genetically depleting RAGE on the susceptibility towards apoptosis. In murine osteoblastic cells, RAGE knockout increased both spontaneous and induced apoptosis. Decreased levels of B-cell lymphoma 2 protein and increased intrinsic apoptosis were observed in Rage−/− cells. Furthermore, loss of RAGE increased expression of the death receptor CD95 (Fas, Apo-1), CD95-dependent caspase activation and extrinsic apoptosis, whereas NF-kB-p65 nuclear translocation was diminished. Importantly, depletion of RAGE reduced the ubiquitination and degradation of p53 and p73 and increased their nuclear translocation. The increase of p53 and p73 transactivational activity was essential for the RAGE-dependent regulation of apoptosis, because knockdown of p53 and p73 significantly decreased apoptosis in RAGE-deficient but not in RAGE-expressing cells. Thus, the RAGE-mediated posttranslational regulation of p53 and p73 orchestrates a sequence of events culminating in control of intrinsic and extrinsic apoptosis signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YCE et al. Cloning and expression of a cell-surface receptor for advanced glycosylation end-products of proteins. J Biol Chem (1992); 267: 14998–15004.

    CAS  PubMed  Google Scholar 

  2. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J et al. Isolation and characterization of 2 binding-proteins for advanced glycosylation end-products from bovine lung which are present on the endothelial-cell surface. J Biol Chem (1992); 267: 14987–14997.

    CAS  PubMed  Google Scholar 

  3. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (2005); 83: 876–886.

    Article  CAS  PubMed  Google Scholar 

  4. Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest (2004); 113: 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bierhaus A, Nawroth PP . Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia (2009); 52: 2251–2263.

    Article  CAS  PubMed  Google Scholar 

  6. Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang BL et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun (2006); 340: 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  7. Eggers K, Sikora K, Lorenz M, Taubert T, Moobed M, Baumann G et al. RAGE-dependent regulation of calcium-binding proteins S100A8 and S100A9 in human THP-1. Exp Clin Endocrinol Diabetes (2011); 119: 353–357.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt AM, Du Yan S, Yan SF, Stern DM . The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest (2001); 108: 949–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soro-Paavonen A, Watson AMD, Li J, Paavonen K, Koitka A, Calkin AC et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes (2008); 57: 2461–2469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sparvero LJ, Asafu-Adjei D, Kang R, Tang DL, Amin N, Im J et al. RAGE (receptor for advanced glycation endproducts), RAGE Ligands, and their role in Cancer and Inflammation. J Transl Med (2009); 7: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H . Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem (2000); 275: 40096–40105.

    Article  CAS  PubMed  Google Scholar 

  12. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature (2000); 405: 354–360.

    Article  CAS  PubMed  Google Scholar 

  13. Kang R, Tang D, Lotze MT, Zeh HJ . RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy (2011); 7: 442–444.

  14. Kang R, Tang D, Loze MT, Zeh HJ . Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy (2011); 7: 91–93.

    Article  PubMed  Google Scholar 

  15. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone (2007); 40: 345–353.

    Article  CAS  PubMed  Google Scholar 

  16. Barnes PJ, Larin M . Mechanisms of disease—Nuclear factor-kappa b—A pivotal transcription factor in chronic inflammatory diseases. N Eng J Med (1997); 336: 1066–1071.

    Article  CAS  Google Scholar 

  17. Cheng B, Pan S, Liu X, Zhang S, Sun X . Cell apoptosis of taste buds in circumvallate papillae in diabetic rats. Exp Clin Endocrinol Diabetes (2011); 119: 480–483.

    Article  CAS  PubMed  Google Scholar 

  18. Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T . The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett (2003); 550: 107–113.

    Article  CAS  PubMed  Google Scholar 

  19. Karin M . Nuclear factor-kappa B in cancer development and progression. Nature (2006); 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L et al. Regulation of osteoclast function and bone mass by RAGE. J Exp Med (2006); 203: 1067–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paul RG, Bailey AJ . Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol (1996); 28: 1297–1310.

    Article  CAS  PubMed  Google Scholar 

  22. Gulcelik NE, Bayraktar M, Caglar O, Alpaslan M, Karakaya J . Mortality after hip fracture in diabetic patients. Exp Clin Endocrinol Diabetes (2011); 119: 414–418.

    Article  CAS  PubMed  Google Scholar 

  23. Hofbauer LC, Brueck CC, Singh SK, Dobnig H . Osteoporosis in patients with diabetes mellitus. J Bone Miner Res (2007); 22: 1317–1328.

    Article  CAS  PubMed  Google Scholar 

  24. Stolzing A, Sellers D, Llewelyn O, Scutt A . Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs (2010); 191: 453–465.

    Article  CAS  PubMed  Google Scholar 

  25. Bentires-Alj M, Dejardin E, Viatour P, Van Lint C, Froesch B, Reed JC et al. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene (2001); 20: 2805–2813.

    Article  CAS  PubMed  Google Scholar 

  26. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ (2010); 17: 666–676.

    Article  CAS  PubMed  Google Scholar 

  27. Hiwatashi K, Ueno S, Kubo F, Sakoda M, Tateno T, Hayashi T et al. Relevance of apoptosis and tolerance to hypoxic stress in cells transfected with Receptor for Advanced Glycation End Products (RAGE). Anticancer Res (2009); 29: 1287–1294.

    CAS  PubMed  Google Scholar 

  28. Chan H, Bartos DP, Owen-Schaub LB . Activation-dependent transcriptional regulation of the human fas promoter requires NF-kappa B p50-p65 recruitment. Mol Cell Biol (1999); 19: 2098–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lavrik IN, Golks A, Baumann S, Krammer PH . Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis. Blood (2006); 108: 559–565.

    Article  CAS  PubMed  Google Scholar 

  30. Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F et al. Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J Cancer (2010); 126: 2049–2066.

    CAS  PubMed  Google Scholar 

  31. Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH . Analysis of CD95 threshold signaling—Triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem (2007); 282: 13664–13671.

    Article  CAS  PubMed  Google Scholar 

  32. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-Decker K et al. RAGE signaling sustains inflammation and promotes tumor development. J Exper Med (2008); 205: 275–285.

    Article  CAS  Google Scholar 

  33. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene (1994); 9: 1799–1805.

    CAS  PubMed  Google Scholar 

  34. Kikuchi H, Ozaki T, Furuya K, Hanamoto T, Nakanishi M, Yamamoto H et al. NF-kappa B regulates the stability and activity of p73 by inducing its proteolytic degradation through a ubiquitin-dependent proteasome pathway. Oncogene (2006); 25: 7608–7617.

    Article  CAS  PubMed  Google Scholar 

  35. Dudley E, Hornung F, Zheng L, Scherer D, Ballard D, Lenardo M . NF-kappaB regulates Fas/APO-1/CD95- and TCR- mediated apoptosis of T lymphocytes. Eur J Immunol (1999); 29: 878–886.

    Article  CAS  PubMed  Google Scholar 

  36. Rensing-Ehl A, Hess S, Ziegler-Heitbrock HW, Riethmuller G, Engelmann H . Fas/Apo-1 activates nuclear factor kappa B and induces interleukin-6 production. J Inflamm (1995); 45: 161–174.

    CAS  PubMed  Google Scholar 

  37. Tsoporis JN, Izhar S, Leong-Poi H, Desjardins JF, Huttunen HJ, Parker TG . S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circ Res (2010); 106: 93–101.

    Article  CAS  PubMed  Google Scholar 

  38. Constien R, Forde A, Liliensiek B, Grone HJ, Nawroth P, Hammerling G et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis (2001); 30: 36–44.

    Article  CAS  PubMed  Google Scholar 

  39. Borcsok I, Schairer HU, Sommer U, Wakley GK, Schneider U, Geiger F et al. Glucocorticoids regulate the expression of the human osteoblastic endothelin A receptor gene. J Exper Med (1998); 188: 1563–1573.

    Article  CAS  Google Scholar 

  40. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ (2009); 16: 1093–1107.

    Article  CAS  PubMed  Google Scholar 

  41. Muller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H et al. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ (2005); 12: 1564–1577.

    Article  CAS  PubMed  Google Scholar 

  42. Mundt HM, Stremmel W, Melino G, Krammer PH, Schilling T, Muller M . Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem Biophys Res Commun (2010); 396: 335–341.

    Article  CAS  PubMed  Google Scholar 

  43. Munsch D, Watanabe-Fukunaga R, Bourdon JC, Nagata S, May E, Yonish-Rouach E et al. Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. J Biol Chem (2000); 275: 3867–3872.

    Article  CAS  PubMed  Google Scholar 

  44. Villa-Morales M, Santos J, Fernandez-Piqueras J . Functional Fas (Cd95/Apo-1) promoter polymorphisms in inbred mouse strains exhibiting different susceptibility to gamma-radiation-induced thymic lymphoma. Oncogene (2006); 25: 2022–2029.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Subrata Biswas for isolation of MOC, Thomas Fleming for assistance with chromatin immunoprecipitation and electroporation, Dr Andreas Koch for assistance with flow cytometry, as well as Katja Lorenz and Petra Hill for expert technical assistance. This work was supported by a grant of the Dietmar Hopp Stiftung ‘Altern—Mobilität erhalten, Regeneration ermöglichen’ to MB, PN, AB and TS, by a grant of the Deutsche Forschungsgemeinschaft SFB938 to AB and by the grant of the Deutsche Forschungsgemeinschaft, Transregional Collaborative Research Centre SFB/TRR77, the Tumorzentrum Heidelberg/Mannheim and the Helmholtz Alliance on Immunotherapy of Cancer funded by the Initiative and Networking Fund of the Helmholtz Association to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Brune.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, M., Müller, M., Melino, G. et al. Depletion of the receptor for advanced glycation end products (RAGE) sensitizes towards apoptosis via p53 and p73 posttranslational regulation. Oncogene 32, 1460–1468 (2013). https://doi.org/10.1038/onc.2012.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.150

Keywords

This article is cited by

Search

Quick links