Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a pivotal endocytosis motif in c-Met and selective modulation of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide

Abstract

Since c-Met has an important role in the development of cancer, it is considered as an attractive target for cancer therapy. Although molecular mechanisms for oncogenic property of c-Met have been actively investigated, regulatory elements for c-Met endocytosis and its effect on c-Met signaling remain unclear. In this study, we identified a pivotal endocytic motif in c-Met and tested it for selective modulation of HGF-induced c-Met response. Using various chimeric constructs with the cytoplasmic tail of c-Met, we were able to demonstrate that a dileucine motif located in the C-terminus of c-Met acts to regulate its endocytosis. Synthetic peptide Ant-3S, consisting of antennapedia-derived protein transduction domain (designated as Ant) and c-Met-derived 16 amino-acids (designated as 3S, spanning amino-acids 1378 to 1393), rapidly moved into cancer cells and disrupted c-Met trafficking. Importantly, an extension of c-Met retention time on the membrane by Ant-3S peptide significantly decreased phosphorylation-dependent c-Met signal transduction. Additionally, the peptide effectively inhibited HGF-induced cell growth, scattering and migration. The underlying molecular mechanism for these observations has been investigated and revealed that the dileucine motif interacts with endocytic machinery, including adaptin β and caveolin-1, for sustained and enhanced signal transduction. Finally, Ant-3S peptide specifically blocked internalization of interleukin-2 receptor α-subunit/3S chimeric protein, but not the other receptors, including Glut4, Glut8 and transferrin receptor. Such results indicate the presence of a selective endocytic assembly for c-Met. It also suggests a potential for c-Met-specific anti-cancer therapy using the identified endocytic motif in this study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Polo S, Di Fiore PP . Endocytosis conducts the cell signaling orchestra. Cell 2006; 124: 897–900.

    Article  CAS  Google Scholar 

  2. Kermorgant S, Zicha D, Parker PJ . PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J 2004; 23: 3721–3734.

    Article  CAS  Google Scholar 

  3. Kermorgant S, Zicha D, Parker PJ . Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J Biol Chem 2003; 278: 28921–28929.

    Article  CAS  Google Scholar 

  4. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S . The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 2002; 416: 187–190.

    Article  CAS  Google Scholar 

  5. Li N, Lorinczi M, Ireton K, Elferink LA . Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J Biol Chem 2007; 282: 16764–16775.

    Article  CAS  Google Scholar 

  6. Singleton PA, Salgia R, Moreno-Vinasco L, Moitra J, Sammani S, Mirzapoiazova T et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem 2007; 282: 30643–30657.

    Article  CAS  Google Scholar 

  7. Kamei T, Matozaki T, Sakisaka T, Kodama A, Yokoyama S, Peng YF et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells-regulation by Rho, Rac and Rab small G proteins. Oncogene 1999; 18: 6776–6784.

    Article  CAS  Google Scholar 

  8. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001; 8: 995–1004.

    Article  CAS  Google Scholar 

  9. Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbe S et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol 2005; 25: 9632–9645.

    Article  CAS  Google Scholar 

  10. Mettlen M, Stoeber M, Loerke D, Antonescu CN, Danuser G, Schmid SL . Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol Biol Cell 2009; 20: 3251–3260.

    Article  CAS  Google Scholar 

  11. Le Roy C, Wrana JL . Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6: 112–126.

    Article  CAS  Google Scholar 

  12. Schmidt U, Briese S, Leicht K, Schurmann A, Joost HG, Al-Hasani H . Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2-adaptin subunit of the AP-2 adaptor complex. J Cell Sci 2006; 119: 2321–2331.

    Article  CAS  Google Scholar 

  13. Doray B, Lee I, Knisely J, Bu G, Kornfeld S . The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site. Mol Biol Cell 2007; 18: 1887–1896.

    Article  CAS  Google Scholar 

  14. Byland R, Vance PJ, Hoxie JA, Marsh M . A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 2007; 18: 414–425.

    Article  CAS  Google Scholar 

  15. Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 2008; 456: 976–979.

    Article  CAS  Google Scholar 

  16. Green M, Loewenstein PM . Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179–1188.

    Article  CAS  Google Scholar 

  17. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM . Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 1999; 31: 1937–1948.

    Article  CAS  Google Scholar 

  18. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A . Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271: 18188–18193.

    Article  CAS  Google Scholar 

  19. Lindgren M, Gallet X, Soomets U, Hallbrink M, Brakenhielm E, Pooga M et al. Translocation properties of novel cell penetrating transportan and penetratin analogues. Bioconjug Chem 2000; 11: 619–626.

    Article  CAS  Google Scholar 

  20. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A . Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 1991; 88: 1864–1868.

    Article  CAS  Google Scholar 

  21. Lindsay MA . Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2002; 2: 587–594.

    Article  CAS  Google Scholar 

  22. Garippa RJ, Johnson A, Park J, Petrush RL, McGraw TE . The carboxyl terminus of GLUT4 contains a serine-leucine-leucine sequence that functions as a potent internalization motif in Chinese hamster ovary cells. J Biol Chem 1996; 271: 20660–20668.

    Article  CAS  Google Scholar 

  23. Craven SE, Bredt DS . Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal. J Biol Chem 2000; 275: 20045–20051.

    Article  CAS  Google Scholar 

  24. Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM . A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci USA 1997; 94: 10438–10443.

    Article  CAS  Google Scholar 

  25. Kermorgant S, Parker PJ . Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol 2008; 182: 855–863.

    Article  CAS  Google Scholar 

  26. Derossi D, Joliot AH, Chassaing G, Prochiantz A . The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444–10450.

    CAS  PubMed  Google Scholar 

  27. Stein A, Aloy P . Contextual specificity in peptide-mediated protein interactions. PLoS One 2008; 3: e2524.

    Article  Google Scholar 

  28. Ball LJ, Kuhne R, Hoffmann B, Hafner A, Schmieder P, Volkmer-Engert R et al. Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J 2000; 19: 4903–4914.

    Article  CAS  Google Scholar 

  29. Ferracini R, Longati P, Naldini L, Vigna E, Comoglio PM . Identification of the major autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase. J Biol Chem 1991; 266: 19558–19564.

    CAS  PubMed  Google Scholar 

  30. Tong J, Taylor P, Peterman SM, Prakash A, Moran MF . Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041. Mol Cell Proteomics 2009; 8: 2131–2144.

    Article  CAS  Google Scholar 

  31. Rothenberger S, Iacopetta BJ, Kuhn LC . Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell 1987; 49: 423–431.

    Article  CAS  Google Scholar 

  32. Cantiani L, Manara MC, Zucchini C, De Sanctis P, Zuntini M, Valvassori L et al. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res 2007; 67: 7675–7685.

    Article  CAS  Google Scholar 

  33. Schroeder B, Weller SG, Chen J, Billadeau D, McNiven MA . A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO J 2010; 29: 3039–3053.

    Article  CAS  Google Scholar 

  34. Kirisits A, Pils D, Krainer M . Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways. Int J Biochem Cell Biol 2007; 39: 2173–2182.

    Article  CAS  Google Scholar 

  35. Sorkin A, von Zastrow M . Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10: 609–622.

    Article  CAS  Google Scholar 

  36. Liu ZX, Yu CF, Nickel C, Thomas S, Cantley LG . Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem 2002; 277: 10452–10458.

    Article  CAS  Google Scholar 

  37. Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T et al. c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 2008; 283: 4344–4351.

    Article  CAS  Google Scholar 

  38. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S . A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 2011; 13: 827–837.

    Article  CAS  Google Scholar 

  39. Craig HM, Reddy TR, Riggs NL, Dao PP, Guatelli JC . Interactions of HIV-1 nef with the mu subunits of adaptor protein complexes 1, 2, and 3: role of the dileucine-based sorting motif. Virology 2000; 271: 9–17.

    Article  CAS  Google Scholar 

  40. Diviani D, Lattion AL, Abuin L, Staub O, Cotecchia S . The adaptor complex 2 directly interacts with the alpha 1b-adrenergic receptor and plays a role in receptor endocytosis. J Biol Chem 2003; 278: 19331–19340.

    Article  CAS  Google Scholar 

  41. Shewan AM, Marsh BJ, Melvin DR, Martin S, Gould GW, James DE . The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochem J 2000; 350 (Pt 1): 99–107.

    Article  CAS  Google Scholar 

  42. Flessner LB, Moley KH . Similar [DE]XXXL[LI] motifs differentially target GLUT8 and GLUT12 in chinese hamster ovary cells. Traffic 2009; 10: 324–333.

    Article  CAS  Google Scholar 

  43. Wang W, Loh HH, Law PY . The intracellular trafficking of opioid receptors directed by carboxyl tail and a di-leucine motif in Neuro2A cells. J Biol Chem 2003; 278: 36848–36858.

    Article  CAS  Google Scholar 

  44. Garnier J, Gibrat JF, Robson B . GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266: 540–553.

    Article  CAS  Google Scholar 

  45. Lindberg M, Biverstahl H, Graslund A, Maler L . Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 2003; 270: 3055–3063.

    Article  CAS  Google Scholar 

  46. Czajlik A, Mesko E, Penke B, Perczel A . Investigation of penetratin peptides. Part 1. The environment dependent conformational properties of penetratin and two of its derivatives. J Pept Sci 2002; 8: 151–171.

    Article  CAS  Google Scholar 

  47. Branco MC, Sigano DM, Schneider JP . Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Curr Opin Chem Biol 2011; 15: 427–434.

    Article  CAS  Google Scholar 

  48. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS . Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 2011; 12: 1101–1116.

    Article  CAS  Google Scholar 

  49. Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 2010; 70: 10090–10100.

    Article  CAS  Google Scholar 

  50. Grepin R, Pages G . Molecular mechanisms of resistance to tumour anti-angiogenic strategies. J Oncol 2010; 2010: 835680.

    Article  Google Scholar 

  51. Al-Hasani H, Yver DR, Cushman SW . Overexpression of the glucose transporter GLUT4 in adipose cells interferes with insulin-stimulated translocation. FEBS Lett 1999; 460: 338–342.

    Article  CAS  Google Scholar 

  52. Lisinski I, Schurmann A, Joost HG, Cushman SW, Al-Hasani H . Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem J 2001; 358: 517–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Kiwon and Young Woo laboratory for their inputs and discussions. We thank Julie Kim and Oh Gordon Chong for editing. This work was supported by the Ministry of Knowledge Economy (Regional R&D Cluster Project B0009735) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Jo or Y W Park.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, KW., Park, J., Park, CW. et al. Identification of a pivotal endocytosis motif in c-Met and selective modulation of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide. Oncogene 32, 1018–1029 (2013). https://doi.org/10.1038/onc.2012.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.122

Keywords

This article is cited by

Search

Quick links