Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model

Abstract

Dyslipidemia has been associated with an increased risk for developing cancer. However, the implicated mechanisms are largely unknown. To explore the role of dyslipidemia in breast cancer growth and metastasis, we used the apolipoprotein E (ApoE) knockout mice (ApoE−/−), which exhibit marked dyslipidemia, with elevated circulating cholesterol and triglyceride levels in the setting of normal glucose homeostasis and insulin sensitivity. Non-metastatic Met-1 and metastatic Mvt-1 mammary cancer cells derived from MMTV-PyVmT/FVB-N transgenic mice and c-Myc/vegf tumor explants respectively, were injected into the mammary fat pad of ApoE−/− and wild-type (WT) females consuming a high-fat/high-cholesterol diet and tumor growth was evaluated. ApoE−/− mice exhibited increased tumor growth and displayed a greater number of spontaneous metastases to the lungs. Furthermore, intravenous injection of Mvt-1 cells resulted in a greater number of pulmonary metastases in the lungs of ApoE−/− mice compared with WT controls. To unravel the molecular mechanism involved in enhanced tumor growth in ApoE−/− mice, we studied the response of Mvt-1 cells to cholesterol in vitro. We found that cholesterol increased AktS473 phosphorylation in Mvt-1 cells as well as cellular proliferation, whereas cholesterol depletion in the cell membrane abrogated AktS473 phosphorylation induced by exogenously added cholesterol. Furthermore, in vivo administration of BKM120, a small-molecule inhibitor of phosphatidylinositol 3-kinase (PI3K), alleviated dyslipidemia-induced tumor growth and metastasis in Mvt-1 model with a concomitant decrease in PI3K/Akt signaling. Collectively, we suggest that the hypercholesterolemic milieu in the ApoE−/− mice is a favorable setting for mammary tumor growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bianchini F, Kaaks R, Vainio H . Overweight, obesity, and cancer risk. Lancet Oncol 2002; 3: 565–574.

    Article  Google Scholar 

  2. Xue F, Michels KB . Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr 2007; 86: s823–s835.

    Article  Google Scholar 

  3. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008; 300: 2754–2764.

    Article  CAS  Google Scholar 

  4. Gallagher EJ, LeRoith D . Insulin, insulin resistance, obesity, and cancer. Curr Diab Rep 2010; 10: 93–100.

    Article  CAS  Google Scholar 

  5. Gallagher EJ, Leroith D . Minireview: IGF, insulin, and cancer. Endocrinology 2011; 152: 2546–2551.

    Article  CAS  Google Scholar 

  6. Novosyadlyy R, Lann DE, Vijayakumar A, Rowzee A, Lazzarino DA, Fierz Y et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res 2010; 70: 741–751.

    Article  CAS  Google Scholar 

  7. Fierz Y, Novosyadlyy R, Vijayakumar A, Yakar S, LeRoith D . Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 2010; 59: 686–693.

    Article  CAS  Google Scholar 

  8. De Stefani E, Mendilaharsu M, Deneo-Pellegrini H, Ronco A . Influence of dietary levels of fat, cholesterol, and calcium on colorectal cancer. Nutr Cancer 1997; 29: 83–89.

    Article  CAS  Google Scholar 

  9. Platz EA, Clinton SK, Giovannucci E . Association between plasma cholesterol and prostate cancer in the PSA era. Int J Cancer 2008; 123: 1693–1698.

    Article  CAS  Google Scholar 

  10. Zielinski CC, Stuller I, Rausch P, Muller C . Increased serum concentrations of cholesterol and triglycerides in the progression of breast cancer. J Cancer Res Clin Oncol 1988; 114: 514–518.

    Article  CAS  Google Scholar 

  11. Chae YK, Valsecchi ME, Kim J, Bianchi AL, Khemasuwan D, Desai A et al. Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. Cancer Invest 2011; 29: 585–593.

    Article  CAS  Google Scholar 

  12. Edidin M . Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 2003; 4: 414–418.

    Article  CAS  Google Scholar 

  13. Patra SK . Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 2008; 1785: 182–206.

    CAS  PubMed  Google Scholar 

  14. Li YC, Park MJ, Ye SK, Kim CW, Kim YN . Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 2006; 168: 1107–1118; quiz 404-5.

    Article  CAS  Google Scholar 

  15. Freeman MR, Solomon KR . Cholesterol and prostate cancer. J Cell Biochem 2004; 91: 54–69.

    Article  CAS  Google Scholar 

  16. Graziani SR, Igreja FA, Hegg R, Meneghetti C, Brandizzi LI, Barboza R et al. Uptake of a cholesterol-rich emulsion by breast cancer. Gynecol Oncol 2002; 85: 493–497.

    Article  CAS  Google Scholar 

  17. Freeman MR, Di Vizio D, Solomon KR . The Rafts of the Medusa: cholesterol targeting in cancer therapy. Oncogene 2010; 29: 3745–3747.

    Article  CAS  Google Scholar 

  18. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR . Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 2005; 115: 959–968.

    Article  CAS  Google Scholar 

  19. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR . Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 2002; 62: 2227–2231.

    CAS  PubMed  Google Scholar 

  20. Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 2007; 67: 6238–6246.

    Article  CAS  Google Scholar 

  21. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM . Statins and cancer prevention. Nat Rev Cancer 2005; 5: 930–942.

    Article  CAS  Google Scholar 

  22. Platz EA, Leitzmann MF, Visvanathan K, Rimm EB, Stampfer MJ, Willett WC et al. Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst 2006; 98: 1819–1825.

    Article  CAS  Google Scholar 

  23. Mondul AM, Caffo B, Platz EA . Minimal detection bias in the inverse association between statin drug use and advanced prostate cancer risk: a simulation study. Cancer Epidemiol 2011; 35: e6–11.

    Article  CAS  Google Scholar 

  24. Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC . Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 2007; 121: 1571–1578.

    Article  CAS  Google Scholar 

  25. Cauley JA, Zmuda JM, Lui LY, Hillier TA, Ness RB, Stone KL et al. Lipid-lowering drug use and breast cancer in older women: a prospective study. J Womens Health (Larchmt) 2003; 12: 749–756.

    Article  Google Scholar 

  26. Kawashima Y, Chen J, Sun H, Lann D, Hajjar RJ, Yakar S et al. Apolipoprotein E deficiency abrogates insulin resistance in a mouse model of type 2 diabetes mellitus. Diabetologia 2009; 52: 1434–1441.

    Article  CAS  Google Scholar 

  27. Zhang SH, Reddick RL, Piedrahita JA, Maeda N . Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258: 468–471.

    Article  CAS  Google Scholar 

  28. Alexopoulos CG, Blatsios B, Avgerinos A . Serum lipids and lipoprotein disorders in cancer patients. Cancer 1987; 60: 3065–3070.

    Article  CAS  Google Scholar 

  29. Favrot MC, Dellamonica C, Souillet G . Study of blood lipids in 30 children with a malignant hematological disease or carcinoma. Biomed Pharmacother 1984; 38: 55–59.

    CAS  PubMed  Google Scholar 

  30. Halton JM, Nazir DJ, McQueen MJ, Barr RD . Blood lipid profiles in children with acute lymphoblastic leukemia. Cancer 1998; 83: 379–384.

    Article  CAS  Google Scholar 

  31. Sekine Y, Koike H, Nakano T, Nakajima K, Takahashi S, Suzuki K . Remnant lipoproteins induced proliferation of human prostate cancer cell, PC-3 but not LNCaP, via low density lipoprotein receptor. Cancer Epidemiol 2009; 33: 16–23.

    Article  CAS  Google Scholar 

  32. Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG . Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem 2011; 286: 11314–11327.

    Article  CAS  Google Scholar 

  33. Hu J, La Vecchia C, de Groh M, Negri E, Morrison H, Mery L . Dietary cholesterol intake and cancer. Ann Oncol 2012; 23: 491–500.

    Article  CAS  Google Scholar 

  34. Fidler IJ . The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  Google Scholar 

  35. Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D et al. Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 2007; 104: 6740–6745.

    Article  CAS  Google Scholar 

  36. Caldieri G, Buccione R . Aiming for invadopodia: organizing polarized delivery at sites of invasion. Trends Cell Biol 2010; 20: 64–70.

    Article  CAS  Google Scholar 

  37. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    Article  CAS  Google Scholar 

  38. Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF et al. Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999; 19: 1960–1968.

    Article  CAS  Google Scholar 

  39. Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 2005; 22: 47–59.

    Article  CAS  Google Scholar 

  40. Pei XF, Noble MS, Davoli MA, Rosfjord E, Tilli MT, Furth PA et al. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim 2004; 40: 14–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ADA mentor-based postdoctoral fellowship award 7-08-MN-33 and National Cancer Institute Grant RO1CA128799, both to DLR. We thank Novartis for providing us with BKM120 compound. In addition, partial support was from the Israel Cancer Association to DLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D LeRoith.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alikhani, N., Ferguson, R., Novosyadlyy, R. et al. Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model. Oncogene 32, 961–967 (2013). https://doi.org/10.1038/onc.2012.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.113

Keywords

This article is cited by

Search

Quick links