Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

A Corrigendum to this article was published on 15 November 2012

Abstract

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies—as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    Article  CAS  Google Scholar 

  2. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131: 1190–1203.

    Article  CAS  Google Scholar 

  3. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448: 561–566.

    Article  CAS  Google Scholar 

  4. Jazii FR, Najafi Z, Malekzadeh R, Conrads TP, Ziaee AA, Abnet C et al. (2006) Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 12: 7104–7112.

    Article  CAS  Google Scholar 

  5. Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ (1999) Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 59: 2776–2780.

    CAS  Google Scholar 

  6. Miyake I, Hakomori Y, Shinohara A, Gamou T, Saito M, Iwamatsu A et al. (2002) Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 21: 5823–5834.

    Article  CAS  Google Scholar 

  7. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362: 2202–2211.

    Article  CAS  Google Scholar 

  8. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M et al. (2010) Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28: 2625–2634.

    Article  Google Scholar 

  9. George RE, Attiyeh EF, Li S, Moreau LA, Neuberg D, Li C et al. (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2: e255.

    Article  Google Scholar 

  10. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF et al. (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455: 930–935.

    Article  CAS  Google Scholar 

  11. Mazot P, Cazes A, Boutterin MC, Figueiredo A, Raynal V, Combaret V et al. (2011) The constitutive activity of the ALK mutated at positions F1174 or R1275 impairs receptor trafficking. Oncogene 30: 2017–2025.

    Article  CAS  Google Scholar 

  12. George R, Attiyeh E, Li S, Moreau L, Neuberg D, Li C et al. (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2: e255.

    Article  Google Scholar 

  13. Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R (2005) Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol 167: 213–222.

    Article  CAS  Google Scholar 

  14. De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM et al. (2010) Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res. [Meta-Analysis Research Support, Non-US Government] 16: 4353–4362.

    Article  CAS  Google Scholar 

  15. Passoni L, Longo L, Collini P, Coluccia AM, Bozzi F, Podda M et al. (2009) Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res 69: 7338–7346.

    Article  CAS  Google Scholar 

  16. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9: 28–39.

    Article  Google Scholar 

  17. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10: 317–327.

    Article  CAS  Google Scholar 

  18. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med (Review) 357: 39–51.

    Article  CAS  Google Scholar 

  19. Kurai J, Chikumi H, Hashimoto K, Yamaguchi K, Yamasaki A, Sako T et al. (2007) Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 13: 1552–1561.

    Article  CAS  Google Scholar 

  20. Regales L, Gong Y, Shen R, de Stanchina E, Vivanco I, Goel A et al. (2009) Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. [Research Support, NIH, Extramural Research Support, Non-US Government]. 119: 3000–3010.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K et al. (2009) Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. [Research Support, Non-US Government]. 28: 803–814.

    Article  CAS  Google Scholar 

  22. Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL (2005) Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24: 6213–6221.

    Article  CAS  Google Scholar 

  23. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med [Clinical Trial, Phase I Multicenter Study Research Support, NIH, Extramural Research Support, Non-US Government]. 363: 1693–1703.

    Article  CAS  Google Scholar 

  24. Bresler SC, Wood AC, Haglund EA, Courtright J, Belcastro LT, Plegaria JS et al. (2011) Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Sci Transl Med 3: 108ra14.

    Article  Google Scholar 

  25. George RE, Sanda T, Hanna M, Frohling S, Luther 2nd W, Zhang J et al. (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455: 975–978.

    Article  CAS  Google Scholar 

  26. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L et al. (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. [Research Support, NIH, Extramural]. 70: 10038–10043.

    Article  CAS  Google Scholar 

  27. Engelman JA, Settleman J (2008) Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev 18: 73–79.

    Article  CAS  Google Scholar 

  28. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al. (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363: 1734–1739.

    Article  CAS  Google Scholar 

  29. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L et al. (2010) The neuroblastoma associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK translocated cancers. Cancer Res 70: 10038–10043.

    Article  CAS  Google Scholar 

  30. Haupt R, Garaventa A, Gambini C, Parodi S, Cangemi G, Casale F et al. (2010) Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol 28: 2331–2338.

    Article  Google Scholar 

  31. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX et al. (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. [Multicenter Study Randomized Controlled Trial Research Support, NIH, Extramural Research Support, US Government, PHS]. 363: 1324–1334.

    Article  CAS  Google Scholar 

  32. Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T et al. (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14: 439–449.

    Article  CAS  Google Scholar 

  33. Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D et al. (2006) Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66: 6050–6062.

    Article  CAS  Google Scholar 

  34. Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J et al. (2005) Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem 280: 26039–26048.

    Article  CAS  Google Scholar 

  35. Hank JA, Robinson RR, Surfus J, Mueller BM, Reisfeld RA, Cheung NK et al. (1990) Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2. Cancer Res. [Research Support, Non-US Government Research Support, US Government, PHS]. 50: 5234–5239.

    CAS  PubMed  Google Scholar 

  36. Bougherara H, Subra F, Crepin R, Tauc P, Auclair C, Poul MA (2009) The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res 7: 1525–1533.

    Article  CAS  Google Scholar 

  37. Tabone-Eglinger S, Subra F, El Sayadi H, Alberti L, Tabone E, Michot JP et al. (2008) KIT mutations induce intracellular retention and activation of an immature form of the KIT protein in gastrointestinal stromal tumors. Clin Cancer Res 14: 2285–2294.

    Article  CAS  Google Scholar 

  38. Bougherara H, Subra F, Crepin R, Tauc P, Auclair C, Poul MA (2009) The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res 7: 1525–1533.

    Article  CAS  Google Scholar 

  39. Tabone-Eglinger S, Subra F, El Sayadi H, Alberti L, Tabone E, Michot JP et al. (2008) KIT mutations induce intracellular retention and activation of an immature form of the KIT protein in gastrointestinal stromal tumors. Clin Cancer Res 14: 2285–2294.

    Article  CAS  Google Scholar 

  40. Hobbie WL, Moshang T, Carlson CA, Goldmuntz E, Sacks N, Goldfarb SB et al. (2008) Late effects in survivors of tandem peripheral blood stem cell transplant for high-risk neuroblastoma. Pediatr Blood Cancer 51: 679–683.

    Article  Google Scholar 

  41. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT et al. (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355: 1572–1582.

    Article  CAS  Google Scholar 

  42. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX et al. (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363: 1324–1334.

    Article  CAS  Google Scholar 

  43. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L et al. (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14: 737–744.

    Article  CAS  Google Scholar 

  44. Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M et al. (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18: 904–914.

    Article  CAS  Google Scholar 

  45. Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB et al. (2001) Phase I study of anti—epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 19: 3234–3243.

    Article  CAS  Google Scholar 

  46. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  47. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455: 971–974.

    Article  CAS  Google Scholar 

  48. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V et al. (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455: 967–970.

    Article  CAS  Google Scholar 

  49. De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM et al. (2010) Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res 16: 4353–4362.

    Article  CAS  Google Scholar 

  50. Johns TG, Luwor RB, Murone C, Walker F, Weinstock J, Vitali AA et al. (2003) Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc Natl Acad Sci USA 100: 15871–15876.

    Article  CAS  Google Scholar 

  51. Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M et al. (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–1639.

    Article  CAS  Google Scholar 

  52. Matar P, Rojo F, Cassia R, Moreno-Bueno G, Di Cosimo S, Tabernero J et al. (2004) Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 10: 6487–6501.

    Article  CAS  Google Scholar 

  53. Regales L, Gong Y, Shen R, de Stanchina E, Vivanco I, Goel A et al. (2009) Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 119: 3000–3010.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–525.

    Article  CAS  Google Scholar 

  55. Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R et al. (2005) Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 11: 2327–2336.

    Article  CAS  Google Scholar 

  56. Hughes B (2010) Antibody-drug conjugates for cancer: poised to deliver? Nat Rev Drug Discov 9: 665–667.

    Article  CAS  Google Scholar 

  57. Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J et al. (2005) Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem. [Research Support, Non-US Government]. 280: 26039–26048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pfizer for their gift of crizotinib, and Dr Marc Vigny for his gift of the ALK monoclonal antibodies 30, 49, 46 and 14. This work was supported in part by NIH Grants R01-CA140198 (YPM), 2R01 CA60104-16 (RCS), 2R01 CA60104-16S1 (RCS), the Children's Oncology Group, the Carly Hillman Fund (YPM), NIH Training Grant in Structural Biology T32-GM008275 (SCB), a fellowship grant from the St Baldrick's Foundation (ACW) and the US Army Peer-Reviewed Medical Research Program (W81XWH-10-1-0212/3 to MAL/YPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y P Mossé.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, E., Haglund, E., Mace, E. et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 31, 4859–4867 (2012). https://doi.org/10.1038/onc.2011.647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.647

Keywords

This article is cited by

Search

Quick links