Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth

Abstract

Aberrant Ras/Raf/MEK/ERK signaling is one of the most prevalent oncogenic alterations and confers survival advantage to tumor cells. Inhibition of this pathway can effectively suppress tumor cell growth. For example, sorafenib, a multi-kinase inhibitor targeting c-Raf and other oncogenic kinases, has been used clinically for treating advanced liver and kidney tumors, and also has shown efficacy against other malignancies. However, how inhibition of oncogenic signaling by sorafenib and other drugs suppresses tumor cell growth remains unclear. In this study, we found that sorafenib kills cancer cells by activating PUMA (p53-upregulated modulator of apoptosis), a p53 target and a BH3-only Bcl-2 family protein. Sorafenib treatment induces PUMA in a variety of cancer cells irrespective of their p53 status. Surprisingly, the induction of PUMA by sorafenib is mediated by IκB-independent activation of nuclear factor (NF)-κB, which directly binds to the PUMA promoter to activate its transcription. NF-κB activation by sorafenib requires glycogen synthase kinase 3β activation, subsequent to ERK inhibition. Deficiency in PUMA abrogates sorafenib-induced apoptosis and caspase activation, and renders sorafenib resistance in colony formation and xenograft tumor assays. Furthermore, the chemosensitization effect of sorafenib is dependent on PUMA, and involves concurrent PUMA induction through different pathways. BH3 mimetics potentiate the anti-cancer effects of sorafenib, and restore sorafenib sensitivity in resistant cells. Together, these results demonstrate a key role of PUMA-dependent apoptosis in therapeutic inhibition of Ras/Raf/MEK/ERK signaling. They provide a rationale for manipulating the apoptotic machinery to improve sensitivity and overcome resistance to the therapies that target oncogenic kinase signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

eIF4E:

eukaryotic translation initiation factor 4E

HCC:

hepatocellular carcinoma

FoxO3a:

forkhead box O3a

KO:

knockout

GSK3β:

glycogen synthase kinase 3β

Mcl-1, myeloid cell leukemia 1; NF-κB:

nuclear factor-κB

PUMA:

p53-upregulated modulator of apoptosis

siRNA:

small interfering RNA

TNF-α:

tumor necrosis factor-α

WT:

wild type

References

  1. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  Google Scholar 

  2. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134.

    Article  CAS  Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  Google Scholar 

  4. Green DR, Kroemer G . Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 2005; 115: 2610–2617.

    Article  CAS  Google Scholar 

  5. Sordella R, Bell DW, Haber DA, Settleman J . Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305: 1163–1167.

    Article  CAS  Google Scholar 

  6. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006; 5: 835–844.

    Article  CAS  Google Scholar 

  7. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M . Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129–3140.

    Article  CAS  Google Scholar 

  8. Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005; 24: 6861–6869.

    Article  CAS  Google Scholar 

  9. Rahmani M, Davis EM, Bauer C, Dent P, Grant S . Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217–35227.

    Article  CAS  Google Scholar 

  10. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006; 66: 11851–11858.

    Article  CAS  Google Scholar 

  11. Yu J, Zhang L . PUMA, a potent killer with or without p53. Oncogene 2008; 27 (Suppl 1): S71–S83.

    Article  CAS  Google Scholar 

  12. Yu J, Yue W, Wu B, Zhang L . PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res 2006; 12: 2928–2936.

    Article  Google Scholar 

  13. Dudgeon C, Wang P, Sun X, Peng R, Sun Q, Yu J et al. PUMA induction by FoxO3a mediates the anticancer activities of the broad-range kinase inhibitor UCN-01. Mol Cancer Ther 2010; 9: 2893–2902.

    Article  CAS  Google Scholar 

  14. Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL et al. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 2009; 18: 2348–2357.

    Article  Google Scholar 

  15. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP et al. PUMA is directly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell Death Differ 2009; 16: 1192–1202.

    Article  CAS  Google Scholar 

  16. Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J . Sp1 and p73 Activate PUMA Following Serum Starvation. Carcinogenesis 2008; 29: 1878–1884.

    Article  CAS  Google Scholar 

  17. Ming L, Wang P, Bank A, Yu J, Zhang L . PUMA dissociates Bax and BCL-XL to induce apoptosis in colon cancer cells. J Biol Chem 2006; 281: 16034–16042.

    Article  CAS  Google Scholar 

  18. Yu J, Wang P, Ming L, Wood MA, Zhang L . SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene 2007; 26: 4189–4198.

    Article  CAS  Google Scholar 

  19. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 2003; 100: 1931–1936.

    Article  CAS  Google Scholar 

  20. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    Article  CAS  Google Scholar 

  21. Plastaras JP, Kim SH, Liu YY, Dicker DT, Dorsey JF, McDonough J et al. Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res 2007; 67: 9443–9454.

    Article  CAS  Google Scholar 

  22. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 2006; 203: 1657–1663.

    Article  CAS  Google Scholar 

  23. Huang S, Sinicrope FA . Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther 2010; 9: 742–750.

    Article  CAS  Google Scholar 

  24. Baud V, Karin M . Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40.

    Article  CAS  Google Scholar 

  25. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  Google Scholar 

  26. Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 2005; 19: 159–170.

    Article  CAS  Google Scholar 

  27. Zhang L, Ming L, Yu J . BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 2007; 10: 207–217.

    Article  CAS  Google Scholar 

  28. Wilhelm S, Chien DS . BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8: 2255–2257.

    Article  CAS  Google Scholar 

  29. Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ . Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005; 11: 5472–5480.

    Article  CAS  Google Scholar 

  30. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005; 307: 1101–1104.

    Article  CAS  Google Scholar 

  31. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008; 22: 808–818.

    Article  CAS  Google Scholar 

  32. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C . Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 2006; 25: 6800–6816.

    Article  CAS  Google Scholar 

  33. Biton S, Ashkenazi A . NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 2011; 145: 92–103.

    Article  CAS  Google Scholar 

  34. Augustine CK, Toshimitsu H, Jung SH, Zipfel PA, Yoo JS, Yoshimoto Y et al. Sorafenib, a multikinase inhibitor, enhances the response of melanoma to regional chemotherapy. Mol Cancer Ther 2010; 9: 2090–2101.

    Article  CAS  Google Scholar 

  35. Sun W, Powell M, O’Dwyer PJ, Catalano P, Ansari RH, Benson III AB . Phase II study of sorafenib in combination with docetaxel and cisplatin in the treatment of metastatic or advanced gastric and gastroesophageal junction adenocarcinoma: ECOG 5203. J Clin Oncol 2010; 28: 2947–2951.

    Article  CAS  Google Scholar 

  36. Kim C, Lee JL, Choi YH, Kang BW, Ryu MH, Chang HM et al. Phase I dose-finding study of sorafenib in combination with capecitabine and cisplatin as a first-line treatment in patients with advanced gastric cancer. Invest New Drugs 2010 (e-pub ahead of print 14 September 2010).

  37. Molhoek KR, Brautigan DL, Slingluff Jr CL . Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor rapamycin. J Transl Med 2005; 3: 39.

    Article  Google Scholar 

  38. Martinelli E, Troiani T, Morgillo F, Rodolico G, Vitagliano D, Morelli MP et al. Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res 2010; 16: 4990–5001.

    Article  CAS  Google Scholar 

  39. Lind JS, Dingemans AM, Groen HJ, Thunnissen FB, Bekers O, Heideman DA et al. A multicenter phase II study of erlotinib and sorafenib in chemotherapy-naive patients with advanced non-small cell lung cancer. Clin Cancer Res 2010; 16: 3078–3087.

    Article  CAS  Google Scholar 

  40. Hong DS, Sebti SM, Newman RA, Blaskovich MA, Ye L, Gagel RF et al. Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin Cancer Res 2009; 15: 7061–7068.

    Article  CAS  Google Scholar 

  41. Gomez-Benito M, Marzo I, Anel A, Naval J . Farnesyltransferase inhibitor BMS-214662 induces apoptosis in myeloma cells through PUMA up-regulation, Bax and Bak activation, and Mcl-1 elimination. Mol Pharmacol 2005; 67: 1991–1998.

    Article  CAS  Google Scholar 

  42. Zhang G, Park MA, Mitchell C, Hamed H, Rahmani M, Martin AP et al. Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin Cancer Res 2008; 14: 5385–5399.

    Article  CAS  Google Scholar 

  43. Martin AP, Park MA, Mitchell C, Walker T, Rahmani M, Thorburn A et al. BCL-2 family inhibitors enhance histone deacetylase inhibitor and sorafenib lethality via autophagy and overcome blockade of the extrinsic pathway to facilitate killing. Mol Pharmacol 2009; 76: 327–341.

    Article  CAS  Google Scholar 

  44. Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K et al. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 2010; 52: 1310–1321.

    Article  CAS  Google Scholar 

  45. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ et al. Activation of PI3K/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 2011; 337: 155–161.

    Article  CAS  Google Scholar 

  46. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res 2010; 30: 4951–4958.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang P, Yu J, Zhang L . The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 2007; 104: 4054–4059.

    Article  CAS  Google Scholar 

  48. Yue W, Sun Q, Dacic S, Landreneau RJ, Siegfried JM, Yu J et al. Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesis 2008; 29: 84–92.

    Article  CAS  Google Scholar 

  49. Kohli M, Yu J, Seaman C, Bardelli A, Kinzler KW, Vogelstein B et al. SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci USA 2004; 101: 16897–16902.

    Article  CAS  Google Scholar 

  50. Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW et al. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 2011; 71: 3625–3634.

    Article  CAS  Google Scholar 

  51. Qiu W, Wang X, Leibowitz B, Liu H, Barker N, Okada H et al. Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc Natl Acad Sci USA 2010; 107: 20027–20032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Monica E Buchanan, Brian Leibowitz, Mathew F Brown and other lab members for critical reading and helpful discussion, and Drs Jennifer R Grandis and Jing Hu for help with analyses of STAT1, STAT3, eIF4E and GSK3β. This work is supported by NIH grants CA106348 and CA121105 and American Cancer Society grant RSG-07-156-01-CNE (LZ); Flight Attendant Medical Research Institute, NIH grant CA129829 and American Cancer Society grant RGS-10-124-01-CCE (JY); NIH National Research Service Award postdoctoral fellowship grant F32CA139882 (CD); and China Scholarship Council (RP). LZ is a scholar of the V Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudgeon, C., Peng, R., Wang, P. et al. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth. Oncogene 31, 4848–4858 (2012). https://doi.org/10.1038/onc.2011.644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.644

Keywords

This article is cited by

Search

Quick links